o

D-A182 031 THE RUTONRTED PROGRRNH"‘G oF ELECTROIIC DISPLRVS(U)
SO THRRE CONSULTING SPECIALIST INC FORT WAYNE IN
HASKER ET RL SEP 86 AFWAL-TR-86-38
UNCLASSIFIED F}3615 -85-C-3617

11

5

N
[

e——

a_
=
FEEEE

EEER

1

) Ee ks
s = %
s

o

MICROCOPY RESOLUTION TEST CHART

- i" "

TMT R - .6y
AL] () U
foa oot 't

N
L

L}
L)
ANOBOIGONDA

RO ARAN
) 0 L AN
RONGHEN

.'~
b}
;;- AFWAL-TR-86-3046
§
i
i
R . THE AUTOMATED PROGRAMMING OF ELECTRONIC DISPLAYS
o, R. W. Hasker
> J. S. Edmondson
',' M. R. Fritsch

« Software Consulting Specialists, Inc.
K M P. O. Box 15367
: o Fort Wayne, IN 46885

- September 1986
LS §

< Final Report for Period July 1985 - December 1985
) Approved for public release; distribution is unlimited

DTIC

o
o ELECTE
"
q - &, JULO 1 1967
\"
X E
. FLIGHT DYNAMICS LABORATORY . s
v AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
;’ AIR FORCE SYSTEMS COMMAND
. WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

87 6 29 003

28" Y P e Eas, 7) v N . W N h ¥ o O XD
RERMORE ALl R AR DO CNIGTHICOTRY KNI O A IO NI RL SO KNACR N

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the govern-
ment may have formulated, furnished, or in any way suppliied the said
drawings, spec1fications, or other data, is not to be regarded by implica-
tion or otherwise as in any manner l1icensing the holder or any other person
or corporation, or conveying any rights or permission to manufacture use,
or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign
nations.

This technical report has been reviewed and is approved for
publication.

Gorss A Lty

JAMES A. UPHAUS, JR. RONALD I. MORISHIGE, Lt Qol, USAF
Electronics Engineer Chief, Crew System Deve
Crew Systems Development Branch F]ight Dynamics Division

FOR THE COMMANDER

LI L

'RICHARD A. BOROWSKI, Lt Col, USAF
Chief, Flight Control Division

If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization please notify
AFWAL/FIGR, W-PAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

RO RO AR

UNCLASSIFIED _

ICCUMITY CLANPZICATION OF Tui) PAGCE (Phen Dere t,uuﬂ

REPORT DOCUMENTATION PAGE DEFORFE COUBLETING FORM
V' AgroAT nuuaea 2 COVY ACCE1I10M 0]) AZCIPiICuT’'y CATALDC wumeL A
AFWAL-TR 86-3046 ”
4. NIV, E tend Subitiie) 3 PwPL OF ACPONY o PLMOD COVIRLD
THE AUTOMATED PROGRAMMING OF ELECTRONIC Final Report
DISPLAYS 1 July 1985 - 1 Dec 1985
¢ PILNFOAMING OARC. ALPOAY numwetL n
Y. AYTwmOA(fe) 8. CONTRACY OR CAAnT NyubdCRfe)
R. W. Hasker
J. S. Edmondson F33615-85-C-3617
M. R. Fritsch
P PEATOAWING ORGCANIZATION NAWE AND ADODAL S 10 PROCAAM ELLMENT, PROJILCY, Yasa
Software Consulting Specialists, Inc. AREA & SOAK UNIT munsL AL
P. 0. Box 15367 62201F
Fort Wayne, IN 46885 24030476
11, CONTROLLING OFFI1CE nAMT AND ADDREY 12. RIPOART OATL

Flight Dynamics Laboratory (AFWAL/FIGR)
Air Force Wright Aeronautical Laboratories ==-§%£%%%%%Kcl?86

Air Force Systems Command, WPAFB, OH 45433 87
4 wOnITORING AGENCY mAME & ADORCLII otiforent om Cantrelling Oltige) 15. SECURITY CLASS. (ol this repont)
Unclassified
Se. C ASBNICATION/ODOPNGAADING
CrCOouL L

1. DISTAISUTION STATCULHTY (ol Mmio Roport)

Approved for public release; distribution is unlimited

e [N
17. OIITRIBUTION STATEUENY (of e atenoci misrsu in & 00, 20, It dillosant bum Raper)

19 1yrrLuiutTany nOTCSR

19. KCVY POROS (Canthewe an reveres olde (! mococoawy and 16onitly by Dlosh smanbev)

Video Display, Aircraft Display, Electronic Display, Real-time Display,
Automated Programming, Graphics

10. AGLITAACY (Cantivmss an reverce olde H mecoccary and jdoniify by oeh munber)

> A study was performed to determine the system requirements and
top-level design for a system to support the design and automated
programming of electronic displays for use in real-time environments.
A hierarchy of levels was defined to support the creation and

maintenance of display designs. Different attributes and capabilities ¥
were attached to each level of the hierarchy. The system was partitioned +—)
(continued)
DO , 785", 1473 coitiom or 1 mov et 18 0ssoLETe UNCLASSIFIED

SCCUMTY CLASNPICATION OF Tnis PAGCE (Phen Date Batered)

‘.,!‘\‘l. \J!

,/ UNCLASSIFIED

JECUMTY CLASSIZICATION OF Tuil PAGL(™ e Deote Rasernd)

\\-sginto an editor, animator, and code generator to support the creation,
test, and compilation of display designs. The requirements for the major
functions and data are discussed. A possible implementation is described
which uses as much nondevelopmental hardware and software as possible to
reduce the system's development time and total cost. Use of Ada to
formally describe the display design and the use of computer-aided design
packages to edit display designs is discussed. The system feasi-
bility is discussed and recommendations for system development are made.
I

|

Acqpsszon For
NTIS GRAAI
DTIC TAB
Unannounced O
Justification

1y n—

By
Distribution/ | |

Availability Codes
Avall and/er !
Dist Special :

A-|

+
+
!
]
I

UNCLASSIFIED

SECUMITY CLABMPICATION OF THIS PASE(VRhan Dare Ratered

]

N Table of Contents

Section Page
l Introduction L] L] [] * L] * L] * . . L] L] L 2 L] - [] . L 2 L] L] L2 * L] . - L] . . l

X l L] l The Purpose L] L] L d . . L] L3 L] L] . L] L] . L] . L] L] L] * L] . L] L] L] L] . 1
’1‘ l . 2 The Ne ed L] L] L] L] [2 . L . L] . * L] L] L] L] * L . L] . L] L] . . .2 L] . l
1.3 The Approach ¢ & s & & e & s 8 ® 8 e e 6 8 8 * 8 s e ° s o e 3

e 2 System Descript 10“ ® ®& o & o & * s e ¢ € & & 5 o & * &+ o s o s b o+ o 5

2.1 A Brief Description « « o o o o ¢ o o o o o ¢ o o o o o o & o o 6
: 2,2 System Partitioning « o« o ¢ ¢ o o o ¢ s o o ¢ ¢ o ¢ o ¢ s o o o 6
2.3 Data Requirements . o o o ¢ o o ¢ o o o o o o 9

2.3.1. Display Design Requirements « . « « & 9

2.3.1.1 The Display Design Hierarchy e o e s o & o o 9
2.3.1.2 Entities « s o« o o o o o o o s e o s s s o o 14
r* 2.3.1.2.1 Attributes . « ¢ o« « o o o o o o o 15
f?, 2.3.1e3 Segments « o o o o o o o o o o o o e s o o s o 16
;: 2.3.1.3.1 Dynamic Controls . « « « « « ¢ « » 18
-y 2.3.1.4 ModuleS « o o o o o o o ¢ o s 0 o s s e s s o 24
2.3.2 Formal Display Description Requirements . « ¢« ¢ ¢« ¢« ¢« « 25
o 2.3.3 Executable Display Description Requirements « 26
i 2.3.4. Library RequirementS. « « o« o« « « o s o o o s s s o s o 26
L 2.3.5 Test Data Requirements . « « « o o o o o o o o o o o o« 27
ﬁ; 2.3.6 Target Specific Code Requirements « « ¢« o o o« o o o o o 27
A 2.4 Process Requirements « ¢ o o o o o o o o o ¢ ¢ ¢ o o o o o o o 28
. 2.4.1 Editor Requirements . « « s o ¢ o o o o o o o o s ¢ o » 28
o 2.4.1.1 General Editing Capabilities . + « « ¢ ¢« « « . 28
Rﬁ‘ 2.4.1.2 Default Values « « o « o o o o o o o o s o o « 30
§§~ 2.4.1.2.1 Default Attribute Values 30
ﬁq 2.4.1,2.2 Default Dynamic Control Values . . 31
U 2.4.2 Animator Requirements . « « o« o o o s o o o ¢ o o « o 31
' 2.4.3 Code Generator Requirements T V4
) 2.5 Hardware Requirements « « o o o« o o o o o o o o o o & s 0oqe o o 33
qgf 2.5.1 Input Device Requirements . ¢« « o« s o s o s o ¢ o o o 34
}9 2.5.2 Graphics Terminal Requirements . . « s ¢ ¢ « « o s « o« 35
o 2.5.3 Hard-copy Printer Requirements . « o ¢ o s o s ¢ ¢ o o 35
R 2.5.4 Host Computer RequirementS .« o« ¢ « o ¢ ¢ ¢ o o o e« 35
2.5.5 Target Display Device Requirements . « ¢« ¢« ¢« « o » o « 35
2.6 System Usage Requirements . o o« o« « o o s o o « o o o ¢ o« s o o« 36
2.6.1 Overview . o ¢ o o o o o o o « o o » o o o ¢ o o o o o 36
K 2.6.2 General Usage Requirements .« « o« ¢« « o o o s o o ¢ » » 36
. 2.6.3 Using the Editor . .« . ¢ ¢ ¢ ¢ o o ¢ ¢ ¢ s s o o« s o o 37
" 2.6.4 Using the Code Generator =« « « « ¢ o o o o o o o o o o 37
- . 2.7 System Expansibility Requirements « « « o o o ¢ ¢ ¢« o « o« o » o 38
;ﬁ 3 System Implementation « ¢« ¢ ¢ o ¢ o ¢ ¢ o o o ¢ o ¢ o s o o 0 s s 39
iy
:{ 3.1 The Problems of Implementation .« o« « o « o « o o ¢ o o o o o« « 39
]H 3.1.1 Current Technology and Its Limitations . . ¢« « « ¢« « « 40
3.1.2 Circumventing These Limitations « « « o « & ¢ ¢ o » « o« 42
s 111
b‘:
,_l'

EANTOOLCR USROS T ROPH R
) -"*-"‘.’ BT T E N R

Table of Contents (continues)

3.1.2.1 Use of Hardware « « o o o o o o o o s o o o « 42
3.1‘2.2 Reduction of Requirements ® ° o ® ® & s ° o o 43

3.1.3 System Implementation Partitioning . ¢« « ¢ ¢« v ¢ o o 44
3.2 Data Implementation =« « o« o o o o o o o o o o o o o o o o o » 44
: 3.2.1 Digsplay Design Implementation . . « « o o o o o o o & 44
o 3.2.2 Formal Display Description Implementation 45
oy 3.2.3 Executable Display Description Implementation 47
e 3.2.4 Library Implementation « « « o o« o o o o o« o o o o o o A7
‘ 3.2.5 Test Data Implementation « « o« o« o o ¢ « o o o o o« o o 47
oy 3.2.6 Target-Specific Code Implementation . . e ¢ o o o o 4B
kﬁ 3.3 Process Implementation « o o « o ¢ o o o o o » s o o s o ¢ o« » 48
N 3.3.1 Editor Implementation =« « ¢ o ¢ o o ¢ o ¢ ¢ o ¢ s « « 49
e 3.3.1.1 The Graphics Ed1tOr « « « o o o o o o o o « o 49
o 3.3.1.2 The Dynamics Ed1tOr « « « « o = « o « « s o o« 52
3.3.1.3 The Translator =« o« o« o ¢ o o o o o o ¢ o o & 53
3.3.2 Animator Implementation .+ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o o ¢ o « & 53
. 3.3.2.1 The Animation Compiler . « ¢« ¢ « o« « ¢« « o + 54
e 3.3.2.2 The Animation Processor « « « « o « « ¢ « & o 54
REN 3.3.3 Code Generator Implementation .+ « o ¢ ¢« ¢ ¢ ¢ s ¢ & » 55
R 3.3.3.1 The Target-Specific Compiler . . . « . « . & 55
3.3.3.2 The Target—-Specific Linker =« « o« ¢ ¢ ¢ ¢ « & 56
) 3.4 Hardware Implementation .« ¢ o « ¢ o o o « o o s o s « o = o @ 56
S‘; 3.4.1 Input Device Implementation .« ¢« « ¢ « ¢« ¢ ¢ o« ¢ ¢« & o 57
Jzy 3.4.2 Output Device Implementation « « « ¢ o ¢ « o o o s o o 58
1$% 3.4.2.1 Hard-copy Output Device Implementatfon . . . 59
et 3.4.2.2 Graphics Terminal Implementation . . . « . . 59
N 3.4.3 Host Computer Implementation « « « « ¢« « o s« o o« « « o« 60
Ly 3.5 A Brief Description of System Implementation « ¢« &« ¢ o ¢ ¢ « & 61
ity
fﬁ& 4 Conclusions and Recommendations ¢ « o« ¢ o ¢ o o o ¢ ¢ ¢ o ¢ o &« o 62
R
"o
APPENDIX A GLOSSARY OF TECHNICAL TERMS « ¢ & « o o o o o o o 2 o s o o 63
iﬁ}
E&a APPENDIX B DETAILED OPERATIONAL SCENARIO: CREATING AN EXAMPLE DISPLAY 68
L)
KRR Boel INtroduction o o o o « o « o o o o o o o o o o s ¢ o o o o ¢« o o 68
v B.2 Sketching the DiSpPlay « « « « ¢ o o o « s o o s s« o o o o o o o « 68
- B.3 D:termining the Display Parameters « ¢ « « o o ¢ o ¢ o o o o o & 68
o B.4 Partitioning the DeSign « « o ¢ o o o o o o s o« o 2 o« o o ¢« s o« o« 69
B B.5 The Gauge Module o « o o o o o ¢ o o o o o o o o o o o o o o o o 69
Ny
" B.5.1 Segment 1.0 ¢ o ¢ ¢ o o o o o ¢ s o o o 6 ¢ o e o 06 10
Bo5¢2 Segment lal . o o« ¢ o o o o o o o o s 6 o ¢ s o o & o« » & 71
ab Be5¢3 Segment 1e2 o o o o o o o o o o o o o o s o o ¢ s 0 o o o 71
:5& B.S.h Segment 1u3 v v 4 v o v o o ot 0 s s 0 o s e e e T2
e
Y B.6 The Top Level Module « o+ s o o o ¢ o o o o o o o s s o o o o oo 12
w.".'.'
' Be6oel Segment 1.0 o o o o o o o o o s o o o o o o s ¢ s s s o o 72
’- B.6.2$egmentl.l........-.............. 72
‘e; iv

AT, CATARARI S it

B.6'
B.6.

3 Segment]. .2 L[] L] L] . . . L[] . L] L] . L] L] L] L] L] L] L d L] * * - .
4 Segment 1.3

B.7 Conclusion ® & & e & @ o 8 ¢ * o & & & o © e ° & & o & &8 8 & e

APPENDIX C COMPUTER-AIDED DESIGN PACKAGE AND HARDWARE SURVEY RESULTS.
C.l Introduction . L] - L] L] . L] L] L] L] L] L] . * L4 L] . L] . . L] * L] e . i

Cnlol The Hardware e o e & * & s e &6 8 s & 8 6 ° o o " o © ° o o
C.l.z The SOftwafe ® & » & & & 2 5 ® & © O s ° & & & * o & o e

C.2 The Su!‘vey e 8 ® o s e 6 e ® & o & © s ° ° 6 & 6 e e ° e o o &
. Graphics Terminals « « ¢ ¢ o o ¢ ¢ ¢« ¢ o o s o o o o o o o

C.2.1
C.2.2 Host Computers e o o o s o & e 4 o s 6 5 s s e s e v o s
C 2 3 Othﬁr CAD Packagc s ® o e ® & e 6 e e & & e+ e e * ° & o @

Co3 COUClUSiOﬂ e ® & & ° & & e ° s e & 6 o ° 2 5 & * 9 o+ o & s & e &

APPENDIX D AN ASSESSMENT OF GRADS & o ¢ ¢ o o o o ¢ o o o o o s o & o

Int roduction L] L] . L] L] L] - L] . L] L] L] L] L] L] L] ° L L] * L] . . L] . .
A Description of GRADS L] L] L] L] * L] L] . . L] L] L] L] . L] L . . L] - L] L]
The Advantages of GRADS « & o o o o o o s o o o o o o o o o o o o

oo o
.
WN -

D.3.]1 Similar AlternativeS o« o« « o o o o o o o o s s o « o & o &

.4 The Disadvantages of GRADS ¢ o e 8 ¢ o ¢ e+ 8 e e & o e & 6 & e @
5 Conclusion © 6 o & & & e & 8 o 6 & ® 8 0 & ® ° © s & * 8 6 & e

(=

73
73

73

74

74

74
74

75
76
76
76

76

77
717
717
78
78

79
79

WY I BN TR TN T N TN S0 WE SO T gl Wi AWM LTS AR U AN T e R e ‘\UR“"IUX.‘IU‘-B--‘\"T
|
|
I
|
i

Table of Figures

Figure Title Page
1-1 m‘ Di&plly EnVironnent e @ e ¢ ¢ @ 8 & ® e e & & 8 * s 8 e s s 0+ o 2
1 -2 The C\u‘rent PI‘OCOSB fO!‘ cr“tins Diaplays e @& ® 6 e e o e e o ¢ o+ o 3
2-1 The Proposed Process for Creating Displays . . « ¢« « « « ¢« o« o = 5 .
2-2 ThO syst“ P&l‘ti tioning e e e & e e e © * o ° o . 7

. 2-3 The Display Design Hierarchy . . « « « « « « o+ &
2=-4 Characteristics Associated with Hierarchy Levels
2=5 A Simple Display . . ¢ ¢« ¢ ¢ ¢ o ¢ ¢ o o o o o o
2-6 The Structure of the Simple Display Using the Hierarchy
2=7 The Intersection of Clipping Boundaries
2-8 The Segment Numbering System ¢« ¢« « ¢ « o o « &
2=9 The Priorities of Segments . . . ¢ « ¢« ¢ ¢« ¢ ¢ o ¢ o o o
2-10 The Cumulative and Noncommutative Nature of Transformations . .
2-11 The Use of User-specified Priorities « « « o+ ¢« ¢ o « o & + 22 i

- o
® e e o o o o

e * o & o & & o

* 8 e e o o

® & & o o o s o

* o & o e o =+ o

e @€ & e & & s s =
-
N

L)
L]
N
-

- -~

3-1 The Editor Subsystem Partitioning . . « « ¢« ¢« ¢ ¢ o ¢« ¢« o ¢ ¢ « « o ¥9
3-2 The Animator Subsystem Partitioning . . .
3-3 me COde Genet‘ator‘ Subsystelll Pal‘titioning e @ e » * * e e s e & & o 56

.
.
.
.
.
.
.
.
.
.
.
-
.
(%]
-

i &1 Tho Fluid St&tus Display s @ A& e & e © 9 & e 9 @ s B ¢ ¢ & © o°o °o = 69
B-z seuent 1.0 e 8 & & ¢ 8 & @ » S ° o e BT 8 & e S ¢ ° & B o e * ¢ * @ 70

vi

I RO BTN T ST T T) I AR F L g 2.0 R XX 20 AR SRR ATAGRY, e

Ao

b
:;\ 1 1Introduction
) vy
U 1.1 The Purpose
A This report documents a study made to determine the requirements for and
} the feasibility of a system designed to automate the programming of electronic
o graphic displays which respond to real-time inputs. It is directed at those
.i responsible for designing such displays. This study was performed by Software
R Consulting Specialists, Inc., Fort Wayne, Indiana, for the Air Force Wright
Y Aeronautical Laboratories, Flight Dynamics Laboratory at Wright-Patterson Air
e Force Base under contract number F33615-85-C-3617 and project number 24030476.
i
.x:':l:
?ay 1.2 The Need
;’:"“: |
' Complex graphics displays that gather and display rapidly changing infor- 1
S mation are seeing increased use in time-critical environments. The ability of
rﬁﬁ these displays to efficiently present large amounts of information makes them
&ﬁg ideal in situations that require an operator to quickly assimilate and act on

real-time data. Information that would othervise have to be presented in
numerical form or on dials and gauges can, via a multi-purpose display, be
shown as a graph, drawn on a diagram, overlaid on a map, or displayed im a
as three-dimensional scene.

:\zg It 18 the responsibility of a graphics designer to select the best method
: ~§ of presenting this information on the display. The display design process is
59% made difficult, however, by the large amount of time currently needed for the
designer to convert a display concept into the final product--with the assis-
R tance of a programmer. The designer gets no immediate feedback about the dis-
Qﬁé play appearance or operation. Since the display will move and change in
:Q“ response to real-time inputs, the final operation of the display design is8 of-
'bzy ten never seen until it is implemented in the target display device, perhaps 1
et months later. The evaluation and improvement of display designs at this late i
J stage is inefficient and costly. Thus, many designs are never optimized because |
by of the time and cost involved. What 1is needed 1is a system that allows a
j&? display designer to interactively construct and modify display designs, test
.m{- their operation using seimulated real-time inputs, and then translate this
ﬁg& design into the necessary code(*) to run the target display device. |
AR

A * Underlined words are defined in the Glossary of Technical Terms, Appendix §
iyt A. !

B 6 T, O ATAT)] Py 1 ! w A . r
A AR AN ; :t"h"l:‘!'o Y, 0%, ! KRR S

R W TT W T TR R TR e e e . 2 A R R

Data- Target
Acquisition Disp]ay
Computer Device

Y
Y

v YY

Sensor Display Image
Data Parameters

Figure 1-1 The Display Environment

The environment for a typical target display device (as shown in Figure
1=1) is as follows: a data-acquisition computer gathers data from sensors and
other subsystems and transmits the display parameters to a graphics device.
The graphics device then draws an image on the screen which reflects the
values of these parameters. The graphic image can present the information in
a variety of formats, including representations of instrument panels, symbolic
schematics showing the state of the environment, and views of the outside
world in both two and three dimensions.

The current process of creating display designs is illustrated in Figure
1-2. It is very time consuming, involving both a designer and a programmer
working in series. The designer first draws a rough sketch of each display to
be created. The sketch is refined into a drawing which is given to a computer
programmer along with the designer's explanation of how the display should
operate. The programmer writes a computer program for the target device's
microprocessor which will make the electronic screen display the drawing.
This computer program is transferred to the target display system hardware in
the target environment or an appropriate simulator. The designer must then
evaluate the actual display in this environment. Further refinements are
given to the programmer who then does the necessary reprogramming. This
process 1is repeated until the display is acceptable to the designer or until
available time and funds are exhausted.

A primary problem with this display design process is the 1lack of
communication between the designer and the programmer: the designer's sketch
i3 too informal to ensure that the programmer's product will be correct. As a
consequence of the inexactness of the drawing, some components in the final
display will likely be shaped or placed incorrectly. Also, it is very
difficult to show the movements of the various display components on the
sketch. When the programmer does not fully understand the designer, he will

a often make a reasonable but not necessarily correct guess at what is desired.
Since the programmer is rarely an expert in designing optimal displays, he

? often needs advice from designers and other programmers.

2

L)

i)

3

‘I

‘ -2 -

..... PP T S T N T S S W T
S, *-'-l" Lo Co

DR (e run ron ATt L0 L N L o i Ty -, - " P ALR AR AP AT A . FPS VRO
AR RN "t-‘,"?'ll‘”‘ R L",' A ,:" '?‘?' e ?;“4;."?’{ Rl AN ’ N, 'A"u ".."J.Q "' "'{ (ﬂ-‘ 'l 2 .‘ N ANV, .A. S B P ' '-.

.,fn"
X4 Ideas / Sketch
. /
/
';:;, ‘\' Designer Display Modifications Programmer
o b
‘\‘i‘
1!“!
v,:"’
.';'i' Display Evaluation Computer Code
NG
Al
o
o Target
g Display
Device
iy
:: Figure 1-2 The Current Process for Creating Displays
2&
. 1}
.\ If the communication problem were solved by improving the interface
SN' between the designer and the programmer, other problems would still remain.
ﬁb The designer must wait for the programmer to complete the implementation
5 before he can begin to evaluate the design. It must be possible to rapidly
' iterate between designing and evaluating. This would allow the designer to
e maximize his creativity by minimizing the interruptions in his flow of
:}; thought. Also, programmers must repetitively re-solve the same electronic and
.jj programming problems every time a new display device technology is used.
o These side issues divert resources from the main design effort.
“‘.
) Anyone confronted with creating displays for real-time environments must
uf deal with the above problems. Large amounts of time and money are spent each
ﬁf; year, in both the government and private sectors, producing graphic display
}k designs. A system which could substantially improve the efficiency of
02‘ producing these displays would result in substantial savings for its users.
j?k' Software Consulting Specialists, Inc. has performed this study to determine
. the requirements for and the feasibility of a system designed to support the
oL design and automated programming of these electronic graphic displays.
{{j Whenever it is important to minimize time and funds required to create new
:’g graphic displays, this system will be a valuable tool to help display
'@b designers accomplish their goal.
L
o
:»3 1.3 The Approach
Py A
v
f A The requirements for this system and a top level design were completed
Q,Q using a top-down approach. The system described in this report is not
| configured for any particular hardware or software. It is rather an ideal,
O implementation-independent system defined to meet the needs. The detailed
o
o -3-
t --‘
[
R
."";

1A I O e On) L PLPL YT PR PRy 3 - NI (s LR B AN
Ny ‘-‘.'“".9-'?'2",'-'.'- A U NN LR !‘k ,'i B\ O " 2 " '.!.l) ‘.0‘,'-0 . -.9.‘“4'., , IVRTEAC R 1‘-.5'!.0'3‘& W, tl“i‘!‘!"‘l

. TN VOO T Ty \ o LA hAadth ahh ola o0 o d ala acd A oAb il ohh oAh ol odh abd sbh ot abd aad ok b il alih b il U

system design must wait until the next phase of this effort, at which time all
nondevelopmental hardware and software will be acquired and any gaps filled
with custom hardware and software. The actual implementation of the system
may result in the temporary exclusion of several system requirements due to
current technological limitations. These can be added as the development of
new technology permits.

We performed the following system specification steps:

o Define the generic system requirements, which include
functional, performance, and operational requirements;

o Define the operational use of the system;

Prepare a top level design of the system;

o Briefly d:termine the availability and suitability of existing
hardware and software components; and

o Determine where custom components will probably be needed to
produce a complete system.

(o]

In accomplishing the above, we kept in mind several key guidelines which
apply to the development of any major system. Foremost is that the system
requirements are defined by the user and the system designer, rather than by
the capabilities of current technology. The system should be minimal; no
capabilities should exist which do not fit the need. The system must also be
modular to minimize maintenance costs. The system must be open ended to allow
the addition of new requirements with a minimum impact on the design.
Finally, as much commercially available equipment as possible must be used to
reduce the development time and cost.

We present our findings in the following sections and appendices.
Section 2 specifies the requirements for an ideal system based on the need.
Section 3 explains which features of the ideal system are unsupported by the
current technology and presents a possible implementation based on the reduced
requirements. Section 4 presents our conclusions. Appendix A is a glossary
of many of the technical terms used in the report. Appendix B presents a
sample design session. Appendix C presents the results of a hardware and
software survey of possible nondevelopmental items. And Appendix D assesses
the use of GRADS (Graphics Real-Time Application Display Support) in the
implemented system.

RATAR AR AT AR UL TORYA

2 System Description

A new process for creating displays is proposed to fill the above needs.
This process 1is illustrated in Figure 2-1. The designer first creates a
formal description of his display design. The designer then tests the display
design by putting it into motion. Finally, the executable computer program
for a particular target display device is created by a code generator. This
section of the report explains the process in detail.

F_or‘mal Target

Design Docrii Display

the escription Device
Display

Executable
Display
Description

ideas/
Sketch

Designer

Evaluation

Figure 2-1 The Proposed Process for Creating Displays

This section is divided into the following seven subsections:

A Brief Description,

System Partitioning,

Data Requirements,

Process Requirements,

Hardware Requirements,

System Usage Requirements, and
System Expansibility Requirements.

00 000O0OO0

The brief description overviews the entire system, breaking it into discrete
components and describing how they interface with each other. The next four
sections cover in detail the requirements for the components and interfaces
mentioned in the brief description. The next section explains how the system
will be used as a whole and as the various parts. The last section specifies
the areas in which the system should be expansible.

-5 -

2.1 A Brief Description

The system will support the design of graphic information presented on
electronic displays. First the design is entered into the system using a
graphics terminal. Next the movements and changes in response to Jjpnput data
are tested. Finally, the code which implements the design on the target
display device is automatically generated.

In the design phase, the display designer will use graphic entities such
as lines, circles, solids, or text to create pieces of the display design
known as segments. He will assign attributes and dynamic controls to the
segments, defining how and where they are displayed on the screen as a result
of the various real-time system inputs. Segments may in turn be nested in
other segments which move and change in relation to one another to form
modules which make up the complete display design. These display designs, and
portions thereof, may be stored in 1libraries for reuse. Throughout this
phase, the designer will be supported by powerful editors which present the
possible choices at each step--an environment optimized for the intermittent
user.

The output of the design phase will be the formal display description.
This formal description will be the basis for all other operations of the
system. It will be totally comprehensive and unambiguous. It will be in a
form such that a programmer may manually write the necessary code to implement
the design on the target graphics hardware without needing any other
information about the display design.

In the test phase, the designer will use simulated input data to animate
the display design on the screen. This animation process will transform the
formal display description into a sequence of rapidly changing frames. The
designer will be able to specify screen update rates from frame-by-frame up to
full speed, allowing him to identify such problems as incorrect spacing of
elements or distracting use of color. If a fault is discovered, the display
design can be modified and retested repeatedly.

After the display design is found to be acceptable, the formal display
description will be transformed into the @xecutable display description which
uses the target hardware's instruction set to generate the images on the
target display device. This is the code generation phase. The transformation
may be done either manually by a programmer or automatically by the system.

2.2 System Partitioning

Figure 2-2 shows how the system may be best partitioned into major
components to provide the needed capabilities. The motational convention used
is as follows: closed boxes represent physical devices; open boxes represent
data; circles represent processes vwhich manipulate or change data; double
circles represent persons interfacing with the system; and directed arrows
indicate the flow of information from the sources of data to their
destinations.

| Input Graphics
L Devices Terminal

Designer

Programmer

Target [

Specific Code

Y

Executable
Display
Description

Library

Code

A 4

Generator T ;
Formal .Diz-_-.plag D?;;?l(:g
Description Device

Figure 2-2 The System Partitioning

The data consist of the formal display description, the test data, the
library of display components, the target-specific code, and the executable
display description. The formal display description is a comprehensive and
unambiguous description of the appearance of the final display. The test data
are used to vary the display in such a manner as to allow the designer to
evaluate the display design. The target-specific code is written by the
programmer to support the creation of the executable display description. The

axecutable diaplay description is the executable program which may be run on
the target display device.

The processes consist of the editor, the animator, and the code
generator. The editor allows the designer to create the display design. The
Animator allows the designer to evaluate the design by seeing it change on the

-7 -

hadhde edhiieddbnad

o, screen in real time. The c¢ode generator automatically produces the program
0 which will run on the target display device.

A The physical devices consist of the input devices, the graphics terminal,
and the target display device. The input devices allow the designer to give
commands to the system. The graphics termipal allows the designer to observe

_d' the effects of his commands and to view the display design. The target
‘:. display device is the equipment which produces the display in the real-time
Y environment. Two other physical devices are not shown to simplify the
ﬁ drawing: the host computer on which the system is run and a hard-copy
" 4
printer.
é‘ The persons involved in the creation of a display design include the
, designer and the programmer. The designer is the person with expertise in 1
): presenting information to the pilot or display yviewer. His strengths are in
1 human factors considerations, not in programming. He is respomnsible for

designing and evaluating displays. Often, others without human factors
expertise fill the role of the display designer. Some are responsible for
building the target devices and wish to quickly design a display which will
test various aspects of the device. For them, optimal displays are those

K which stretch the capabilities of the hardware. Rapid 1iterations may be
‘:: needed to find the limits of a particular device. Other people who need to
* have input into the display design include representative display viewers who
. will work with the end product and programmers who can suggest improvements
{? which allow more efficient generation of displays. In the context of
ﬂ designing displays, we will mention only the designer with the understanding
rb' that many people with a variety of backgrounds may be involved.

The programmer is a software engineer with at least an associate degree

g in computer science or equivalent experience. He may, but not necessarily,
) have a background in computer graphics. He is responsible for writing the

;q subprograms which gather data from the sensors and other computers,

;. subprograms which actually control individual pixels on the target device, and

'ﬁ subprograms which define custom entities. These will be explained in detail
‘ below.

A The system partitioning given in Figure 2-2 closely parallels the
creation of display designs as described above. Each piece fulfills a need
) for creation of a particular types of data. The need for an unambiguous
Y specification of the display is fulfilled by the formal display description,
' and the editor's sole purpose is to facilitate the creation of this formal
description. The need for data specifying any necessary modifications in the

L
$ display design is fulfilled by the moving images presented on the graphics
'ﬁ; terminal. The need for executable code running in the target display device)
»Q is answered by the executable display description. Experience in software
fﬁv engineering has shown that when examination of the inputs and outputs of the

system--the data--precedes examination of the processes, the final system is 4
Y much more likely to fill the need.

fr The system partitioning is in terms of the functionality of each piece.
LY It is an abstraction of the system that does not necessarily represent
fb different programs or computers communicating to one another. It shows what

components are needed in the implemented system at a high level in order to
‘ provide a solution to the problems of programming target display devices.

3

.)‘

0 -8 -
)

Ly ap s - -p -

e QB OO0 Bt L ARO0] BOUTIT N T T T A= SOOI R 0
PR E % e et Vi l-'k T}’!9).--s‘!’b“w'n‘,i.t"'a" T ANSESY. “n\?‘:‘ ¥ .fh“!"!'s:"f"!‘»"ﬂ“!-""‘*“Q"""-

AL XY LAl Y 4

PR) - - - - e T

)

&S Sd hd bl ol i Ad hathsindhiehanbitediandhandiidfdnssideinhieithindib el ditiaddiidinfidedie S i |

'*-r\.

.

f‘ 2.3 Data Requirements
!' ()

%%; One item of data is prevalent throughout the system: the display design.
ﬁd, As mentioned in Section 1, the "display" is the time~varying pictorial mapping

. of information onto the target device screen. Specifically, the display is a
’ sequence of frames drawn by the target device based on input data values, and
3& the impression of motion is created by the frames being shown at a great
.gj enough rate of speed. Each frame in the display is composed of images, where
ﬁg‘ lmages are the static visual representations of objects or groups of objects.
;Q? The display design created by the designer is the abstract description of what
' - images are displayed on the screen and how they are modified by the input data
g values from sensors and other computers. The abstract description is
X ¢ expressed concretely by the formal display description and the executable
' ' display description. This section contains the requirements for these three
: i descriptions of the display. It also contains the requirements for all
Oy supporting data: the 1library, the test data, and the target-specific code.
- The formats of these data items will be specified during system
" implementation.
$§
1
:;?3 2.3.1 Display Design Requirements
f-_ The display design is an abstract, format-independent description of the
9ﬁ . contents of the display and how changes in the input data affect the mapping
jif of visual information onto the screen. In order to facilitate the creation of
i: usable, unambiguous displays, we have defined a hierarchical structure to be
22 used by the designer in display designs. This section 1is divided into the
v following parts, reflecting the display hierarchy:

?3 o The Display Design Hierarchy,

»?J o Entities,

e o Segments, and
nc o Modules.

.

b
x

; " 2.3.1.1 The Display Design Hierarchy
‘e
g The display design is composed of a module which is a collection of one
- or more segments, Each segment consists of entities, other segments, and

hﬁ module invocations. An entity is in turn composed of a collection of pixels.
™ A pixel 1s the smallest resolvable area of a graphical display device and as
) such is the fundamental component of graphic images. This hierarchy is

' ; illustrated in Figure 2-3.

o) Items affecting the final appearance of the display are associated with
1y different levels of the hierarchy. The association of items with particular
'5 levels is shown in Figure 2-4. This illustration will be briefly explained in

ﬁh. the following paragraphs with more complete explanations given in the

qﬂ& following sections.

oA

o
W

L - 9-

K

s

"3
.

e ; e I e AR TTI o TA - IRt L SR S YL o D
,!5,_".& AN AN AN AR A é.b A IANK N S sAY " ’ml,?-.i’!‘l'-. AN (0 Jr‘?‘s“h L) q‘-"a"’l‘:'t. !!:'l.o!' RO A

MODULE
ENTITY SEGMENT [INVOCATION
,?\ |
AR
ff_;:{ ‘
r;- PIXEL *—1¥4
Figure 2-3 The Display Design Hierarchy
7
[2)
= Q-
Q- O o)
NN R TENE
o W v fass/ob/ TS ~
Ly < S X [/ g/ &K 3
§ /3¢5 /55/85/85/ &
BN & é? g,é? S SYS: <
MODULE >< ><
SEGMENT >< >< >< >< ><
| ENTITY ><

Figure 2-4

Characteristics Associated with Hierarchy Levels

MO O MOL MO MO
i1 a‘!‘ !K‘.\!”,‘h. : X

.l ¢

——

s The realization of the display design is termed the ‘'display’'. A

" particular display 1s defined by a single module. This module has a name

s associated with it, which is the name of the entire display. This module also

b names the input parameters of the display design. New parameter values

A transmitted from the sensor subsystems to the display subsystem will be

e reflected when the wmodule is redrawn. As mentioned above, a module 1is
composed of one or more segments.

;Qg These segments are in turn composed of zero or more entities, 2zero or
KX more subsegments, and zero or more module invocations. Subsegments are
{iﬁ segments which are nested in other segments. We will often refer to these as
ﬂﬁ ‘children' segments. A module Jinvocation means that the invoking segment

A 'requests' that the named module be drawn on the screen. Also associated with
. each segment are a serial number, dynamic controls, and attributes. The
serial number provides a means of identifying each segment and which segments

- are nested in others. Dynamic controls specify at what position and how the
&2 segment is to be drawn on the screen. Examples of such controls include
rotation and translation along an axis.

- An attribute is an item of information which describes the appearance of
an object. When defining an object, the user defines both its shape and its
appearance. Attributes are distinct from the object's shape. Examples of
attributes include texture and gcolor. Attributes may be defined at both the
segment and entity levels. Definitions of attributes at the segment level
will take precedence over those at the entity level when conflicts occur.

-‘1;- -~

'4” Entities are those objects which are seen as fundamental by the systen.
:$5 Although the only truly fundamental object in graphics is the pixel, the
‘ system needs to recognize more advanced entities such as lines, circles, and
2 three-dimensional shapes. Thus the definition of an entity as used within
this system is any graphical object which may not be subdivided to allow a
~% particular attribute to be specified for one part of the object but not for
(it another. Assuming a clock is not an entity, it may be divided into the hands
Wt and the face, with the hands colored red and the face colored green. However,
o? a line cannot be partially yellow and partially white without actually being
- two lines. Attributes are the only items of information associated with the
= entity level.

}s M When it is more convenient to the designer, a collection of entities may
K be termed an igon. Icons will be further explained in Section 2.3.4. Icons
) are not a part of the hierarchy and do not have any characteristics associated
N specifically with them. They exist only for the convenience of the designer.

;"’1 - 11 =

» &

.
i

¥ §
AT TRY AR A%, o A Chde L0 S Y W KL
N "“"‘," ! \ A‘ ’.'v"‘ﬁ "“,""‘4“1‘5”:'\ “,0":"!" '-‘q"’h"-.- ‘ "" e "‘“."‘

e - L
.74,@50.¢. (F

Al h < A Tl g
3% L 1 Ny 1 " | "
AT UM A Th ST S Rt B A IR T

b A W e e

o .
NN

ol

.

1

-
it
1
)

The hierarchy and restrictions allow the designer to create displays
which are structured rather than being an arbitrary collection of images at
varying levels of complexity. Structure promotes ease of making changes in
the display design because it encourages the grouping of related items. It
allows the designer to postpone solving detailed problems. It facilitates the
reuse of portions of display designs. It also allows the designer to specify
and change which portions of the display are permitted to overwrite others on
the screen. It allows the designer to control the extent to which commands
affecting one portion of the display affect other portions.

To illustrate the use of the hierarchy to define a display, consider the
simple display shown 1in Figure 2-5. This display consists of two objects
which respond to the same input parameter. The first object is a linear scale
with a moving slide whose position on the scale is determined by the current
value of the input parameter, within maximum and minimum allowable values.
The slide also contains the actual numeric value of the input parameter. The
second object is a gauge which has been previously defined and stored as a
standard gauge. The gauge contains a needle which rotates based on the value
of the input parameter, to a position between the minimum and maximum
allowable values.

STANDARD GAUGE LINEAR SCALE
600
*—
413 4<:]
200
200 600

Figure 2-5 A Simple Display

Figure 2-6 shows how this display is constructed using the hierarchy.
The entire display is a module which is composed of two segments: one for the
linear scale and one for the gauge. The module specifies the input parameter
to be used and passes the input parameter to the segments it contains.

The segment for the gauge consists of two major subpieces: the text of

the gauge which is a collection of textual entities; and the invocation of the
standard gauge module. The textual entities are the letters that make wup

- 12 =

Ealb LA Sl A0 AUGEIC A0 G G K SOACDONI N W)RR U i KOG R
. : N R . I ' W A S L LY LA

»

o nra ey W
"‘n;‘ '""&'l’r’a?-.,b‘g3‘:‘;’,,l'hé.g.‘i_".)' Cx

MODUL €
"SIMPLE_DISPLAY"

,/’//// \\\\“

——— e
SEGMENT 1.0 SEGMENT 2.0
STANDARD GAUGE) (LINEAR SCALE)

/

\x / —

’
.

e ORI S AT TR o P _

| 'NvaﬁgngN o ! e E&TIT]CS | SEGMENT 2.1 ENTITIES

| v ANDARD. BAUGE b e |F (SLIDE) (TEXT,LINES)
- RS e . e - ‘]

SEGMENT 2.1.1

(CURRENT VALUE) ENTITIES

(LINES,TRIANGLE)

Figure 2-6 The Structure of the Simple Display Using the Hierarchy

'STANDARD GAUGE'. The standard gauge module is invoked by name, and the input
parameter and maximum and minimum allowable values are passed to it during the
invocation, These are used by the module to control the motion of the needle
and to display the numbers '200' and '600'. The gauge segment specifies where
the invoked module will be displayed on the screen using translations along
axes and the size of the invoked module using scaling factors.

The segment for the linear scale is composed of several major subpieces:
the text of the linear scale which is a collection of textual entities; the
vertical scale which is a collection of line entities; and the slide, which is
a segment. The segment also oconteins the dynamic controls to move the slide
segment up and down based on the velue of the input parameter with constraints
to prevent it from moving off the scale. The textual entities are the letters
and digits that make up 'LINEAR SCALE', '200' and '600'. The entities that
make up the vertical scale are a vertical line and several horizontal lines of
differing length.

The slide segment, whose position along the scale is related to the value
of the 1input parameter, 1s composed of several entities and a segment. The
slide box is composed of several entities including a triangle, a vertical
line, and several horizontal lines of different lengths. The numeric value is
in a segment whose content is a command to display the current value of the
input parameter. As the segment which contains the numeric value of the input
parameter is a part of the slide segment, the numeric value will appear to
move up and down with the slide box.

-

This example shows the major aspects of the hierarchy and how they
interrelate to facilitate the construction of complex displays. For a more
thorough example showing the use of the hierarchy in constructing a display,
see Appendix B. The characteristics associated with each level of the
hierarchy will be discussed in greater detail in the following sections.

2.3.1.2 Entities

The following two-dimensional entity types need to be provided with the
system:

points;

lines in various line styles such as dotted, dashed, or solid;
text, consisting of letters, numbers, and special characters;
regular polygons such as triangles, squares, and hexagons;
irregular polygons;

conic sections such as arcs and ellipses; and

irregular curves such as Bezler, cardinal, and cubic splines.

0O 0O0O0OO0OO0OO

The designer needs to be able to fill any closed curve or polygon with any
pattern, This allows such images as checkered backgrounds and colored
schematies of vehicles, The above entities may be displayed in two
dimensions. Support must be provided for three dimensions to allow depth to
be incorporated for more realistic representations of objects and to transmit
more information to the viewer. All two-dimensional entities should be usable
in three dimensions. Also, regular three-dimensional entities such as
pyramids, cubes, cones, and spheres are needed. The designer needs to be able
to create irregular objects based on splines and other curves. Intersections
and unions of these objects are needed to create holes in blocks or to build
airplanes from rectangles and cylinders. Light sources in any color need to
be provided so that shadows and highlights may be seen in three-dimensional
scenes.

The designer needs to be able to depict three dimensional objects using
either wire frames, panels, or continuous shading. In panel shading, the
surface is approximated by a number of flat panel surfaces, and each surface
is given a wuniform color. While in continuous shading, a surface's color
varies according to the angle at which 1light is reflected. It must bde
possible to map a texture pattern to a solid, molding it around the apparent
body. All hidden surfaces need to be removed when displayed for clarity of
images. Wire frames may have depth cues attached to them by the designers.
Depth cues are scales which attach color or shade as a function of distance
from the viewer so that lines in the background appear to be far away while
lines up close are brighter. These scales need to be definable by the
designer.

The system needs to support the creation of user-defined entities in two
and three dimensions. This allows the designer to create images which are too
difficult to build using the above set of entities alone. An example is a
three-dimensional view of the terrain. Terrains could be drawn using large

- 14 =

bl e ——— - L T T OTToT T orrauTanTguroY Tow Ve GETERTLIN O ORerw TN TR TOR TT T TR TUW wa

numbers of general polygons positioned according to display parameters, but
attaching the polygons to the parameters would be very difficult since each
polygon must be placed precisely to simulate the actual world. Given that
terrains will probably be used in many different forms under many conditions,
highly flexible terrain entities must be supported. Since there is no well-
known standard parameterization of a terrain, a predefined terrain entity
would be useless in many situations. It is better to allow the flexibility of
supporting user-defined entities than to attempt to foresee all entities which
might be needed.

. User-defined entities share the characteristics of the pre-defined
entities, where pre-defined entities are those originally provided with the
system as specified above. No command will allow an attribute to apply to one
part of the user-defined entity without applying to the rest. It is possible
that a user-defined entity will have changing attributes such as in a
multi-colored terrain, but these colors will be treated as part of the entity
itself, not as an attribute assigned to the entity.

2.3.1.2.1 Attributes

This section lists the available attributes. Again, attributes describe
the appearance of an object. The following attributes will be supported by
the system:

o chromaticity,

0 gray level,

o transparency, and
o diffuseness.

These will be described in the following paragraphs.

The designer will be able to define the chromaticity of both the
foreground and background. He will also be able to define the gray level of
the foreground and background. Chromaticity refers to the combination of the
hue and gsaturation of the color of an object, while gray level refers to the
lightness or darkness of an object. We use the term 'color' to refer to the
combination of these three aspects. Some target display devices specify color
in terms of red, green, and blue components. The two systems are related in
that changing a red, green, or blue component changes the chromaticity while
changing all three proportionally changes the gray level. The user may work
with whichever system is most convenient.

Many graphic display devices allow use of a certain number of colors at a
time out of a larger range. This larger range is called a 'palette'. The
range of possible colors in the palette should not be arbitrarily limited by
the system because it is not possible to predict all of the colors which may
need to be used in future displays.

It will be possible to specify the transparency of an object, i.e., to
what extent an obscured item will be seen through a covering object. The
range will be from total transparency to total opaqueness. Transparency could
be used to show invisible objects such as the extent of a threat envelope or

- 15 =

P K A]

\ . o .
3 M0 0 Uy T W0 W E g Ur Uiyt 6 Sy b
AN ‘.?A‘.!t‘.’&'e W e ,.'. @Ju'.fcf.!o?.,o?..c'.ft!,h',q.t’.}u!.k!.,\o!.,ﬁ * ~l!'

by o A A

e eOng +*

vh"

the walls of a building. It could also be used to show shadows for three-
dimensional objects by defining the shadow as a transparent gray shape. If
the transparency is below a given threshold, covered 1lines will be dashed
instead of solid (unless the object is totally opaque). Dashed lines are thus
used to distinguish between hidden objects even though the colors are no
longer distinet. This threshold will be specifiable by the designer.
Transparency needs to be cumulative in such a way as to give realism when
images are viewed through multiple semi-transparent objects. For instance, if
a mountain is behind overlapping, transparent threat envelopes, an aircraft
pilot would like to be able to see the mountain behind the envelopes.

The diffuseness of an object needs to be specifiable, where diffuseness
is how much of the light striking an object is scattered back to the viewer.
Diffuseness will range from being totally specular to totally diffuse. This
applies only to three dimensional objects in scenes with one or more light
sources. Diffuseness lends realism to a scene by showing the roughness or
smoothness of objects.

Like transparency, diffuseness needs to be cumulative for multiple
reflections. However, the extent to which multiple reflections are shown is
not as important as other aspects of the images on the screens since only
partial support of multiple reflections may not be noticeably different from
full support.

As mentioned above, attributes may be defined at both the segment and
entity 1levels. By allowing entity-level definitions of these attributes, the
designer can easily create complex, multi-colored objects without using 1large
numbers of segments, one for each color. By allowing segment-level
definitions, the color or transparency of the entire object may be changed
with only one command. However, if the designer wants some parts of an object
to change to blue on command and other parts to change to green, each part
will need to be defined in a separate segment.

2.3.1.3 Segments

Segments are collections of entities, icons, subsegments, module
invocations, dynamic controls, and attributes. Each segment needs to also
have a coordinate system and a clipping boundary specified by the designer.

All movements of the segment as specified by the dynamic controls will
use the specified coordinate system. In the context of this report,
coordinate system refers to the measurement units, the placement of the
origin, and the orientation of the x, y, and z axes. Each segment may have a
different coordinate system. The designer will specify how the coordinate
system of a subsegment relates to that of its parent. The segment may only
move as a whole; the parts of a segment are placed relative to each other in
the same way each time the segment is redrawn. The coordinate system allows
the designer to specify what point will be the origin in all transformations.
If a coordinate system were not present, the effect of transformations would
be ambiguous.

- 16 =

?-* AATSTY . L L
4" 'J‘ :.r "'"\\."

b V% IS

\\;\\.\-\-\"

‘,- % - >
Ll S L o L T ot I AT

S TATE At

"\"-

Lad aLa Lo Lo Lom s o A B Als A A A aie Al bl o LA a'h ol o28 ate arh aad b o hi-ohd abh alid ofarole- o it o AAt et Ahe o Ae- g s et ok Aol seh el

The designer shall also be able to specify a ¢clipping boundary which is
delimited by any closed two or three dimensional shape. The edges of the
clipping boundary define a border across which no portion of a segment may be
drawn. This boundary can be delimited by any shape so that the desigrer has
full flexibility. Clipping boundaries allow different segments to overlap
each other without losing clarity. Using clipping, an instrument panel made
of line drawings placed over a three~dimensional map of the terrain can be
clearly distinguished from the map by giving the instruments a black
background and a clipping boundary. The alternative would be to attempt to
use different colors for all of the lines so that each may be distinguished.
This may be impossible in certain situations, especially on monochrome target
display devices. Clipping 1is shown in Figure 2-7 in which boundaries are
shown with dashed lines. The actual clipping boundary for a nested segment
(e.g., Segment 3.1.2 in Figure 2-7) will be defined by the intersection of its
parent segment's (e.g., Segment 3.1 in Figure 2-7) active clipping boundary
with its own predefined clipping boundary. This new clipping boundary becomes
the active boundary for all children of the nested segment (e.g., Segment
3.1.2 1in Figure 2-7). Clipping boundaries, like entities, will remain static
in size, shape, and position relative to the coordinate system of the segment.

CLIPPING ! A

30UNDARY) e o oy ey m e gy ey g
f0R)
SEGMENT 3.1\ !
\ \ -
N\

REGION IN WHICH

SEGMENT 3.1.2's

OBJECTS WILL BE
DRAWN.

CLIPPING
BQUNDARY

FOR
SFGMENT 3.1 2

N [

N —

Figure 2-7 The Intersection of Clipping Boundaries

As segments may be composed of other segments, it must be possible to
nest segments inside each other to practically any depth. To allow the
designer and the editor subsystem to keep track of which segments are nested
in others, each segment will have a unique serial pumber. The 'highest'
segments, those which are directly contained within a module, will have serial
numbers of 1.0, 2.0, 3.0, and so0 on in whatever order is appropriate for the
particular display. The children of a segment (those which are nested within
that segment), will be numbered using the parent's number as a prefix in the
same way sections are numbered in this report. As an example, the three
children of 8.4.5 would be 8.4.5.1, 8.4.5.2, and 8.4.5.3. 1In general, if S is

- 17 -

LA A A

oA
-) 15,4 Oy)
A ﬂ\’ 'é\Q“\"‘-J»‘Q‘!‘ik‘1'.';'“!‘"1‘8’0,"‘\~ ul‘.'t‘.,""'.\t'.';.'.'“, TN

w2 MM

1
Jg

¥
M the serial number of a segment with n children, they will be numbered S.1,
a- S.2, ..., S.n. This is illustrated in Figure 2-8.
)
L]
o MODULE
K] “ABC*
2
N
h
L |
szcnznr SEGMENT . SEGMENT
‘ 2.0 J.0
:!': B i \\ :
*, —_—L . L
SEGMENT —1 SEGMENT SEGMENT SEGMENT
il - L1 1.2 1.M J...K

B | - .X

; LLSMINT ’ SEGMENT SEGMINT SEGMENT SEGMENT SEGMENT
1.2 1.2.2 1.2.N J...K.1 J...K.2 J K.l

Figure 2-8 The Segment Numbering System

When a display is to be redrawn, the numbering system is used to
determine the priority of segments where priority expresses which segment is
' to be showing when two overlap. Segments with higher priorities will appear
,’ to be drawn on top of other segments. The serial numbering system expresses
1 which segments have the higher priorities where the ordering is such that all

cerial numbers beginning with 1 are drawn before all those beginning with 2.
" Likewise, all those beginning with 1.1 are drawn before all those beginning
with 1.2, and so on. Also, each parent segment is drawn before its children.

‘5 Thus segment 2.0 and all of its children will have a lower priority than any
‘ﬂ. of the segments with serial numbers beginning with 3. This ordering is
4 illustrated in Figure 2-9 where letters are used to show the priority. The

segment 1indicated by the letter ®a"™ has 1lower priority than the segment
v indicated by the letter "b", and so on.

;5
e !
(

‘.

8 2.3.1.3.1 Dynamic Controls

o, Dynamic controls are used to specify where on the screen an object)
4 defined as a segment is to be drawn. They are also used to control whether a

3. given segment is to be drawn or updated in a given frame. Finally, they are

N used to specify how numeric or textual information defined as a segment or

Ao subsegment is to be presented to the viewer. Dynamic controls will be

provided for the following items associated with graphics:

) - 18 =

AN
|' l
)

\"'va Qa0 0 %
RAPL N AN e.".““‘a"’&l';\"".! .'ﬂ’a’l‘s,“!""-" "‘l| ‘! ’4' !' Y W . l‘ O'Q:I'peieq!!".i’q:."."

Yy
!*%

MODUL f
¥ “ABC"

X \

‘;‘&"‘ ~—

'3: A\ a e

.‘:': N 9 |

;&.qu SEGMENT SEGMENT SEGMENT SEGMENT
l 6.0

!f,:‘;‘ 1.0 2.0 30 i
! e
vy
;‘z’. » ll.) < f h
Wy | SEGHENT SEGMENT SEGMENT SEGMENT
PR L L 1.2 2.1 31
ey
:;::: 4 i j k
::::' SEGMENT SEGMENT SEGMENT SEGMENT
Y 1.2.1 311 3.1.2 3.1.3
a:‘:o -
sl

- Figure 2-9 The Priorities of Segments

)

~% o the scale along any axis,

g; o mirroring about any axis,

’ o rotation about any axis,

& o translation along any axis,
\&{ 0 location of the viewpoint relative to the axes,
j&k' o direction of view,
) o twist along the direction of view,
:&Q o distortion of perspective,

; o field of view,

o o drawn or not drawn,

"ol o blinking rate,

}:. o priority, and

;{? o clipping method, and

sf,: o update rate.

ot Dynamic controls will be provided for the following items associated with both
$ﬂ textual and numeric data:
T_’".Q
o o height,

o o width,

. o font style,
B o relative angle,
iy o field width,
:{q o Jjustification within a field, and
ﬁ$¢ o character used to pad a field.
4 ..

Dynamic controls will be provided for the following items associated with
- numeric data only:

- 19 -

B YOO I !E

AT ATy 4700 St By Aty A e h g Ty 4 W ' o !
Tahyise Wit G Ll el J’l"-‘L':.ﬁ"y‘i.".%:’"'rli Wtk OO

a A, e

use of signs,

use of commas,

use of decimal points,

number of decimal digits displayed, and
type of exponential notation.

00000

Scaling, mirroring, rotating, and translating a segment in response to
input parameters allow the designer to make an object appear to move on the
screen. Each time a segment is drawn, the system will recalculate its
position given the equations specified by the designer. For instance, a clock
hand might be made to rotate according to the equation [90 -~ (30 ® HOURS)
degrees] so that when the value of HOURS was 12 the clock hand would be
vertical and pointing upward, and when the value was 9 it would be horizontal
and pointing to the left.

All positional changes are relative to the segment's ocoordinate systemn.
This coordinate system's orientation relative to its parent is specified by
the designer. All transformations are to take place in the order in which
they are specified and are to be cumulative: rotating and then translating a
segment may be different from translating before rotating as shown in Figure
2-10. This allows the designer to specify segment movements in whatever way
is easiest for the particular situation.

The transformations listed above refer to moving the segment on the
screen. It will also be possible to specify the direction from which a
three-dimensional segment appears to be viewed by specifying the location of
the viewpoint, direction of view, twist, distortion, and field of view. The
first defines the viewer's apparent location relative to the segment. The
next specifies what the viewer is looking at. Twist allows the segment to
appear to be at an angle or upside-down by twisting the viewer's horizon.
Field of view defines a cone along the direction of view so that all objects
falling within the cone will be displayed. Perspective distortion allows
exaggeration or suppression of apparent distances between parts of objects.

The designer needs to be able to control whether or rot a segment {is
drawn. If a segment is not drawn, all subsegments of that segment will not be
drawn. This allows portions of the picture to be conditionally displayed.

The rate of blinking of a segment will be specifiable. This will range
from as fast as possible to no blinking. Blinking can be helpful for drawing
attention to important images in the display.

The designer will be able to make use of user-specified priorities to
override the default priority system based on segment numbers. Use of these
priorities is demonstrated in Figure 2-11. This figure is based on Figure 2-9
with the letters indicating priorities as before, except that the
user-specified priorities are taken into coonsideration. User-specified
priorities may be used to re-order the priorities of sibling segments and
their subsegments. They may not be used to re-order the priorities between
the children of one segment and the children of another. For example, in
Figure 2-11, Segment 3.1.2 could never have a priority between the priorities
of Segment 1.2 and Segment 1.1. User-specified priorities allow different
parts of the display to be interwoven, providing greater flexibility to the

- 20 -

— ‘.....Y.-
[S

Q

).

A

) «Q; 0% “1¢0;0)] O -
;'l'ol; _/ _/ \/

v‘,$ | Translate by Rotate by Translate by
) +2in X, +1in ¥ 9@°aboutZ +3in X, ~4 in ¥

(a) Translation & Rotation @ Translation

R

A tiy -

R el T
Rotate by Translate by Translate by
R 90° about 2 +3in¥X,—-4in¥ +2in¥X, +tinV

-
-
N
fon AR
oL .
i
_»_i_ i
heere
:
-
1
-
_
i
el

(b) Rotation + Translation + Translation

:: Figure 2-10 The Cumulative and Noncommutative Nature of Transformations

o designer. Furthermore, the designer may change the priorities so that objects
on the screen may alternately be hidden or revealed.

) These user-specified priorities will be specified numerically with higher
' numbers representing higher priorities. Higher priority segments are drawn
after, or in front of, lower priority segments. If two segments are given the
:i,', same user-specified priority, the default priority system based on the segment
- numbers will be used to determine the priority as shown by segments 2.0 and
4,0 in Figure 2-11. All segments without user-specified priorities are
vl assumed to have a lower priority than any sibling segments which have been
4 assigned user-specified priorities. This is shown by segments 3.1.1, 3.1.2,
and 3.1.3 in Figure 2-11.

Il =21~

A LN . ¢

w080 (PO IOLI KO A O M MO MO ' { W A Wi aTN) o Ay A0 VA VYRS IV
N T o et e S AN e ¢ L e DI DOl

o".q

TTEITEUY W . TETEWVE . w T T (-‘"'"l"\T

Priority a Priority Priority < : Priorit,
16 : - T -
SEGMENT) SEGMENT Z SEGMENT 5 SEGMENT ?
1.0 | 2.0 3.0 4.0
[SO - ____-———J

Priority Friooty

U J b e

i "SEGHENVI SEGM[NY_- SEGMENT SEGMENT
1.1 1.2 2.1 3.1

Priority
k f h 1 q

 SEGMENT SEGMENT SEGMENT [SEGMENT
1.2.1 311 3.1.2 ' 3.1.3

Figure 2-11 The Use of User-Specified Priorities

The method of clipping a segment will be specifiable as none, partial, or
whole. No clipping means that the clipping boundary will be ignored and the
system will assume all lines will never be drawn outside of the specified
limits. This especially applies to segments which do not move at all.
Specifying no clipping could increase the update rate for the display by
allowing the computer to ignore the possibility of the segment stepping beyond
its bounds. Partial clipping means that whenever part of a segment strays
beyond its bounds, only that part will not be displayed--the rest of the
segment will be displayed. This is the most common clipping technique. Whole
clipping means that whenever any part of a segment would be clipped, the
entire segment (and all subsegments) will be suppressed. This is often wused
to suppress messages which will not fit on the screen. It may also be used to
speed the update rate by simplifying the processing which must take place for
each frame.

The designer will be able to specify the update rate of a segment from a
given range of values, where update rate is the rate at which a portion of the
screen is redrawn with a new frame. This is not to be confused with the rate
at which the hardware refreshes the images on the display device. This can be
used to increase the update rate of the rest of the display by allowing the
computer to ignore updating a particular portion of the screen., It may also
be used to slow down how often a particular portion is updated so that it does
not move too quickly for the person viewing the display. For instance, the
viewer may be distracted by the rapidly changing digits of a digital altimeter
which is wupdated 40 times a second, and would prefer to see it change only
twice a second.

-22 -

bbb Bod i o Al alh Al Al sube et ol aha Y e alas had Bad a3

For all textual and numeric data, the designer will be able to specify
the relative angle, height, width, and font style of the characters used to
display the data. Relative angle here refers to the angle at which each
character is drawn with respect to the base angle of the entire text. For
example, italicized text may be created by slanting each character a few
degrees from the perpendicular. Height controls how tall each character is
displayed, while width controls the thickness and relative spacing.
Specification of the above controls allows emphasis to be placed on important
messages or to improve the readability of text.

Again for all textual and numeric data, the designer will be able to
specify the minimum width of the field which the data will occupy on the
screen. The field will be oriented in such a way that the lower 1left corner
is positioned at the origin of the segment, and in such a way that it is
parallel with the surface of the screen so it 1is readable. A specifiable
character will pad the field so that the data is either left justified, right
justified, or centered by the designer. These controls allow clear
presentation of textual information which is easy to read.

In addition, for numeric data, the designer needs to be able to specify
the format of the data: whether and where signs will be displayed to denote
positive or negative values, whether commas are to be used, how many decimal
digits are to be displayed after the decimal point, and whether exponential
notation is to be used. These controls allow clear presentation of numeric
information so that it is as readable as possible.

As an example of the differences between shapes, attributes, and
controls, consider a display which depicts an enemy aircraft in three
dimensions. The body, wings, and fins of the plane would be formed from
various entities such as cylinders and triangles. Attributes would be used to
make it smooth, highly reflective, and silver in color with the appropriate
markings. The transparency attribute would be used so that one could see the
pllot in the cockpit for added realism. All of these define the airplane
object.

Given the object, the dynamic controls are used to position it on the
screen so that it appears to be in the correct position in the sky relative to
the viewer's plane. There are two ways this could be done. One would be to
offset the enemy aircraft from the viewer's position through a sequence of
rotations and translations. Another technique would be to specify viewpoint
coordinates relative to the enemy aircraft's coordinate system. Which way
would be preferable for a particular application depends on the type of
parameters received. Whichever technique 1is used, as the parameters are
updated the enemy aircraft will appear to move against the background sky or
ground.

There will be a separate list of graphic controls for each segment to
specify the above transformations. If two segments are to be moved together,
they should be combined into one or both be made children of a parent segment
in which the controls are placed. Regardless of the form in which they are
specified, graphic controls need to also allow the designer to designate
whether a particular segment is viewable or not. They must allow
specification of the invocation, or drawing, of submodules--modules which are
used as part of a segment. It must be possible to pass data to these modules

- 23 -

o

P.p

fh from the segment. Dynamics must provide conditional control of a segment so

Iﬂ that lists of actions take place only under certain situations. They must

N allow conditional looping so that lists of controls are acted upon repeatedly.
e Dynamic controls will be used by the designer to displey messages and data on

;y: the screen, such as a warning message or the numeric value of a temperature

W} gauge.

&o

:f The final note concerning dynamic controls 1is that they will not
’ accumulate between frames. If in one frame an object is moved to the right 2

) inches and in the next 3 inches, the total movement in the second frame will

I be 3 inches, not 5. This allows the designer to ignore previous positions

j: vhen specifying the dynamic controls for a segment. Since it would be useful
x to be able to base positions on previous segment positions, access to these

§$ values must be provided. One possible mechanism for this would be to provide

such values as PREVIOUS_X LOCATION and PREVIOUS X ROTATION. This allows the

. designer to move an object across the screen without needing an input

ﬁ“ specifying elapsed time.

e

N>

.g, 2.3.1.4 Modules

;q Each module will have an alphanumeric name by which it may be referenced.

o Each module will have a set of specified input parameters. Each 1input

b1 parameter will be given a name by which it may be used. For example, a module

i?_ used to show direction might have the input parameter names will be used by

:q the segments within the module in expressing dynamic changes.

Y Within a segment of a module, it will be possible to evaluate expressions
A formed from the named inputs and from function calls with the inputs as
o parameters. For instance, LOGARITHM (TEMP * 2 - 10) would be a legal
4 expression, assuming that TEMP is greater than 5. The functions which can be
o called will include the following:

o trigonometric functions (such as sine, cosine, tangent, acrsine, arc-

&

:: cosine, and arctangent),

” o other transcendental functions (such as exponential, logarithmic
oy o conversion functions (such as rounding, truncating), and

e o designer-defined functions.

If an expression within a segment is illegal, such as when dividing by
zero, the system must handle it gracefully. One possible technique would be
to display a message on the screen informing the viewer of the error and the
possible corruption of the data in that frame.

Input data will come from the environment outside the display subsystem.

_ These data may also be received as specified below from other modules. Input
o data may be either single items or lists of {items. For example,
: "CURRENT_HEADING" would be a single input while "ENEMY POSITIONS" would be a
o list of inputs.

Ky -24-

v oo

e . A\ - P TR A L P T S P . = ERLCTREY
A RS D N L T S T AT T T s Yo A < RN ALY, M PN

¥

One module will be able to invoke another by name from a segment within
the invoking module. This will cause the invoked module to draw itself on the
screen. Hence, an instrument panel may be composed of several modules invoked
from, for example, Segment 5.3.8. Only modules, not segments, may be invoked
in this manner; the segmentation of a module is hidden outside of that module.
An invocation results in the contents of the invoked module being displayed as
if it were a subsegment to the segment from which it was invoked. An invoked
module will be able to receive data from the segment. The system will support
the passing of the data by allowing the designer to state which parameters in
the invoked module are given which new values. This invocation allows: the
drawing of a module in a frame more than once, such as for a fleet of ships;
the structuring of displays into well-defined components; and the one-time
definition of a component which may be used in many display designs.

2.3.2 Formal Display Description Requirements

As mentioned in the discussion of the need, a primary problem in the
current method of creating displays is the lack of communication of display
designs. An unambiguous description is needed to solve this problem. The
formal display description fills this need. It is formal in the sense that it
does not use a natural language for the description. While English can be
unambiguous, being so is not a necessary part of a statement in the language.
If it were a necessary part of the language, no sentence would be
misunderstood by any knowledgeable person. The formal description will be
defined in such a way that it cannot be misinterpreted by any part of the
system, 1including the designers. Thus the formal description will be an
absolutely unambiguous description of the content of the display and its
response to test data.

The formal description will be readable by a programmer so that he may
use it to program the target hardware manually when it is impossible or
undesirable to do so automatically. All displayed images will be specified
from the symbolic description level down to the level of pixels drawn on the
screen so that the programmer does not need any knowledge about graphic
algorithms.

One possible way to formally describe the display would be to provide a
bit map definition of the display. A bit map is a matrix in which every pixel
on the screen is given a corresponding color. Thus a line would be stored as
a bit map with the values in most of the bits representing the background
color and a small number representing the color of the line. This 1is
unambiguous because one knows precisely which pixels will have what values.

Bit maps, however, provide very 1little abstract information to the
programmer, He must have a symbolic description of the display to be able to
program the target display device. The format of computer code is very
different from a bit map, and using bit map definitions would add an extra
step in the process by making the programmer determine the types and locations
of shapes from the bit maps. If the information can be transmitted in a more
readable form such as in the statement "draw a line from (20,3) to (80,80),"
determining the types and locations of objects in the display is simple.
Thus, if a line is to be drawn on the screen, it will be specified as a line

- 25 -

%
<

'

A |
35 so that the programmer's Job is simplified. This level of detail allows a
h programmer to manually write the code to run the target device. He should
3} need to do as 1little interpretation of the formal description as possible
' while creating optimal code.

As mentioned above, it is assumed that the programmer has a very limited
.E background in computer graphics. Thus all algorithms which are referenced
r? within the formal description should be given to him along with references to
O alternative algorithms, This includes algorithms for both graphics (such as
* those for continuous shading) and mathematics (such as those for tangents and
logarithms).

t':

*

g' 2.3.3 Executable Display Description Requirements

et

' The purpose of this system is to place displays in the target display
\ device. It would defeat the purpose of the system to a certain extent if the
) only output was a formal description of the display because further
;; transformation 1is needed before the target device may execute the display.
w Hence the system will create the executable display description. This will be
W the code which may be transferred to the target hardware. It will instruct
- the target hardware on how to draw the display design in real time, in excess
;5 of 50 frames per second. The difference between the executable and formal
] descriptions is that the latter is in a general form while the former is for
;5 specific hardware. The data will also be in whatever format is necessary for
k system implementation. It can be created either automatically by the code
N generator subsystem or manually by a programmer.

R

:“ 2.3.4 Library Requirements

To solve the need for reuse of display components, the system will
maintain a Jlibrary of these components. The stored components will be of
X several types: user-defined entities, icons, segments, and modules. Each
stored component will be given a name by the designer so that it may be
¥ retrieved using that name at a later time.

"y Modules are stored in their entirety, complete with the defined inputs
and segments. Example modules would be a compass or a truck. When the
w designer specifies that a module will be incorporated into the display at a
" certain place, the editor will show a static image of the module in the
.4 display upon command so that the designer can determine if its use is correct.
ff However, only the name of the module will be placed in the formal display 1
> description, not the module's full description. The module will be referenced

only by name until the last possible moment, at which time its description
W will be inserted in the display design. Thus if a display makes wuse of a
g module, any changes in the module will be reflected in the display whenever
> that display is regenerated. This allows several designers to maintain
; consistency of images used in displays.

-26 -

" . L [P P N AT, .
i nm‘.l',h»,',!!‘.!.‘45,‘3&,‘;0.!.-\';. A A N A O SR O OO At

Segments are stored in libraries with their associated attributes and

2; dynamic controls as well as the entities, icons, subsegments, and module

X invocations which form the segment. Examples of stored segments might include
Qh; a row of dials from an instrument panel or a generic wing of an airplane with
[})

. movable flaps. Changes to library segments do not change the displays in
’y which those segments have been previously used. When a display is built and
¥ the designer incorporates a library segment, the description of that segment

:%ﬁ is immediately inserted into the display design.

ng‘ Icons are groups of entities with their attributes which are often used
h - in displays. The needle of a compass or a symbol representing a hospital are
W, typical icons. Icons, like segments, are incorporated during the building of
,?§: ‘ the display. If a library icon is changed at some later time, any displays
5&3 into which the icon had been previously placed will not change. However, any
Jﬁg display designs built after changing a library icon will reflect the changed
tg‘ version of the Zcon.

<’§: 2.3.5 Test Data Requirements

R

1?& To allow the designer to evaluate the display design, test data are
"i needed so that the animator may simulate how the display will appear in the

fﬁ final environment. The test data will simulate inputs which are to be given

{_, to the target hardware by the data-acquisition computer shown in Figure 1-1.
}$ The designer will be able to generate the test data from a variety of sources.

2{3 To test 'normal' conditions, data could be generated from taped recordings of

;;- the actual environment or by test data generator programs which simulate the
T sensors and other computers. To test 'impossible' conditions, test data could
o be generated manually by the designer.

}:i

.:}

H?J 2.3.6 Target Specific Code Requirements

}i The target specific code is data generated by the programmer to support

T the automatic code generation process. The programmer uses the target

st device's instruction set in creating the necessary target specific code for a

' ﬁ given application. Where the formal display design defines the display down

htf to the level of pixel actions, the target specific oode states how

instructions are used to manipulate the pixels in a particular target. This
target specific code also states how data will be received by the target
display device from the data-acquisition computer.

Since the target devices are constantly being upgraded to include new
technology, the instructions used to generate an image will differ from target
to target. Also, the order and format of the data values sent from the data-
acquisition computer will depend not only upon the computer but also upon the
application. Hence, this information must be provided by someone familiar
with the instruction set and characteristics of the hardware in use at a
particular facility. This person should be a programmer because the
documentation which describes the computer hardware is meant for use by those
with a programming background.

- 27 -

S e e

t - - - o i > - - Saa Anoi s die Bhe S dam M As g iy aa fos g £a® S gt M. s e d o |

2.4 Process Requirements

a These are the requirements for the processes shown in Figure 2-2. These
i processes are the programs which transform the various pieces of data. The
editor transforms the designer's commands into a formal description of the
display. The animator draws the display design on a graphics terminal,

u updating the display in response to test data. The code generator transforms

4 the display into the executable display description for use in the target

? hardware.

L}

L}

' We 1list below those capabilities needed for the creation of optimal -
¢ display designs. We will also specify in a general way how those capabilities

r are presented to the designer. It must be very simple to use the systen.

d Furthermore, potential designers are often intermittent users, and ease of use
o is needed so they do not need to relearn the system every time a new display
) is to be designed. To support these needs, the system must make extensive use
of menus and provide on-line help.

, 2.4.1 Editor Requirements

'Editing' is the process of creating and modifying a document or data
file, in this case the formal display description. In this system, the editor

. will automate the process of interactively creating formal display
; descriptions. The editor requirements must facilitate the creation of any
M display which the designer would need to design. This section is divided into

the following parts:

© General Editing Capabilities, and
0 Default Attribute Values.

N The first section lists the general needs associated with editing displays.

The second section defines default values for the attributes of images in
display designs.

2.4.1.1 General Editing Capabilities

I

These requirements allow the designer to create useful display designs
. with a minimum amount of effort.

P
g

The designer will be able to save, retrieve, and modify the above display
designs including both the graphical images and the dynamic specifications.
This is similar to the capabilities of document creation systems as mentioned
above.

[>

To allow the designer to modify the images as easily as possible, the

" editor must be capable of moving the images on the screen. This movement is
? not to be confused with the movement observed during the animation phase of
4y the design process; it refers only to the temporary repositioning of objects

during the edit phase. Thus the designer may draw a picture on one face of a
cube and then turn the cube to draw a picture on the opposite face. Whereas

- 28 -

OOMN g A)] o - oo
"'.!'_"l?‘i"\:\,.f‘i \"..\":.'\;«'v -,".’ \".‘Jﬁ‘ei"h“ ,‘15 !h“ \ AR

~ ‘ SRS ERER RN "
S SN A Ag,'!.c OC AT I U ST S P T "o Py

SR

WRALATACLES CERC P s
ULy ol 10 . "’

- el Ao A A A h b A A e e ALe Al J

oy textual editors only need to provide the ability to move a window forward and
:;: backward through a file, the graphics editor must support movement in all
;ﬁ& directions. The editor must also provide the ability to view multiple windows

v simultaneously and to move between windows easily. This is necessary to allow
' the designer to view various portions of a display at the same time or to
- preview a library component for possible inclusion in a display.

The editor must support the hierarchy of displays as defined above. The

§3 designer needs to be able to define modules and segments within those modules

A with all of the necessary associated information about parameters and dynamic

Y . controls. This does not mean that the editor will allow the designer to see
the dynamics while in the editor; he must use the animator subsystem to see

R the display actually change in time.

Q‘q“

E} The editor will allow the designer to assign names to segments in a

e display during the editing process. These names exist only for the
convenience of the designer. They will allow the designer to refer to a
segment using a more mnemonic technique than the numbering system provides.

e Unlike the segment numbering system, names are not part of the design
.bi hierarchy. Both segment names and numbers are not accessible outside of the
;g, module in which the segments are defined.

;’g‘:.

'?ﬁ Furthermore, the editor must allow the design of icons and other display
- components for placement in the library. The editor must allow the designer
N to maintain libraries, adding, deleting, and modifying items at will. Any
f? library icon may be incorporated into the design with any scale, orientation,
;“5 or segment membership. Segments may be incorporated as children of any other
ﬁ& segment. Where the parameters of an incorporated segment are undefined in the
o current module, the editor should enforce their definitions.

5%& To further support the library of components, the editor must allow the
X library to be organized using the concept of nested libraries, or
333 sublibraries. Using sublibraries, the designer could, for example, have a
ﬁs library of all gauges with sublibraries for altimeter, temperature, and fuel

level gauges. The editor must allow the designer to view both the names of
the components in a library and the components themselves.

pfﬁ The editor will also assist the designer in designing a display according
{’ to the capabillities of a particular target display device. By entering the
:b name of the target, the editor shall set up the screen so that there is a one-
S to-one mapping between the apparent size of the target on the graphics
w terminal and the target screen's actual size. Also, the palette of colors
;ﬂﬁ will be 1limited so that they correspond to the target display's palette when
,*i that palette is smaller.
1 .
éi: I1f the screen is to be &4 inches by 8 inches the editor will block out
- . all but a four by eight portion of its screen. This allows the system to
T transfer the display design to the size and shape of the target device. The
3; designer shall then be able to expand or contract the display design so that
‘.l

he can examine in detsil a particular area of the display. Such an expansion
a might mean that a portion of the display is beyond the borders of the screen.
Thus the designer might be able to reposition the display on the graphics
terminal to examine different portions of the image. While the display is so
% expanded, the effect of all commands expressing the sizes of icons and other

a - 29 -

NI NERN) 0 D N e Tt R A L L b R M R DO DO ADANOADADAONOND
: '""%"A?""?"'!3‘?05“0-"‘zf""?‘?t?"-“ "’7?‘.-’*2"!"@. M%) ?l:"!'!ﬁ..ﬁ RN e s"h"."b:‘o'-"f\"%‘ ol Qe XS COCICHOICOCRONEN .:'A‘-. o

X N, anel
g AMA Y AEEN M) s a"'n‘.‘l‘. J.ﬂ'l;"ﬁ"“"’e 4

¢ " TR TR TR TR AR NN W TN AW T WS TRV AR RV AT Y AT ST AT TR TR T T T TN R TR TR N T e T TN TR VR R T TN RN W WO W W WECUE W W W W W e WS N e Wy Wy’ e we .- w_w
a

parts of images will be scaled appropriately. If the display is two times

:\. larger than normal, a line 2 inches long will appear to be 4 inches long.
,k These capabilities allow the designer to position images precisely.

! :

$ «‘ .

W Constraining the colors used in the display allows the designer to be

certain that the display design will appear on the target display as desired.
i Also, since many graphic hardware devices support a large palette of colors of
Vg which only a few may actually be on the screen at any one instant, the color

;}s constraint would 1limit the number of different colors in the display
iﬁ simultaneously. Whenever too many colors are used, a message will warn the
ey designer of the problem.

R The above constraints must be removable. Often the designer wishes to

Ry create a hypothetical display which is not limited by the capabilities of any
oy particular target device. Then he must have access to the entire screen and
iy palette of the graphics terminal. Furthermore, it must be possible to allow

the designer to define constraints for any new target devices which mizht
become available without necessitating a rewrite of the editor code.

.‘:

o

?ﬁ

B 2.4.1.2 Default Values

159‘

- It is desirable to allow the designer to not need to specify every detail
" of a display when many of the details remain the same in the majority of
) cases. Defaults are values which are automatically given by the system in

lieu of specification by the designer. Also, defaults are provided so that

the display acts reasonably when information is not supplied. These defaults

hy are specified by the editor when the displays are originally created as
opposed to being added later by some other part of the system.

: Below are suggestions for the default values. The implemented system
% should allow the designer to respecify the defaults at will. Thus where we
;; specify that the default for a monochrome display is light on dark, he may
11N change this default to dark on light.

F 2.4.1.2.1 Default Attribute Values

i, The default color for monochrome displays will be light on dark, while
the default chromaticity for multi-colored displays will be white on black.
.& The default gray level will be the median gray level of the gray scale being
o used. These decisions are arbitrary, and hence they underscore the need for
k respecification of defaults by the designer.

4

)
Ay The default transparency will be opaque. This reflects the normal
. characteristics of objects in the world.
N
4& The default diffuseness will be halfway between totally diffuse and
}a- totally specular. Again, this reflects the normal characteristics of objects
5 in the world.
o
W
b - 30 -

o>

- RSO0 l,.ll, vt e A ey W Y y, 0, VN Ty 0 A AN R K e P
; "*.*«’*-'u‘-"-«’«'\’»‘0‘«‘.4». 'ﬁ‘.u.i.o.‘l‘t“'l, 'a,'-— O‘n‘q't.sv‘t‘h c"n o Al i ‘.I ."Q, ,,‘n&‘.j‘v () .’*.l’o‘i'a.i',jlgj'.. |ft"'

2.4.1.2.2 Default Dynamic Control Values

The default clipping boundary will be the border of the screen. This
allows maximal use of the screen space.

The default blinking will be no blinking. In most cases, the designer
will not need to have objects blinking on and off.

The default priority will be that the segment with the higher serial
number will have the higher priority as specified in Section 2.3.1.3.

This 1s provided for the purposes of reasonable behavior when the
priority of a segment is undefined.

The default clipping will be partial clipping. This is the most widely
used clipping technique.

The default update rate will be as many updates per second as supported
by the hardware. Normally, the designer will want to have the display respond
as quickly as possible to environmental conditions.

For text and numeric data, the default will be displaying all letters and
digits horizontally using the display device's standard font style, height,
and width. This font style is usually the one which is displayed on the
screen the fastest.

For textual and numeric data, the default will be displaying the data in
a field which is as small as possible. The field width should normally be
defined by the designer, but a default needs to be provided so that the
display behaves reasonably when the width is undefined.

For numeric data, the default will be that if the number is negative, it
will have a leading minus sign; otherwise, no sign will be displayed. If the
data are greater than the precision of the display device's integer
arithmetic, it will be displayed using the exponential notation. Commas will
not be supplied by default, and as many decimal digits as are within the
precision of the machine will be displayed. Again, these defaults are
provided for the purposes of reasonable behavior by display designs.

2.4.2 Animator Requirements

The animator uses both the formal display description and the test data
to allow the designer to test his display design by moving and changing the
images on the screen in real time. This 4is 1like a simulator in that it
'simulates' how the display will appear dynamically on the target device.
Essentially, the animator repeatedly displays static frames of images at such
a speed that the human eye perceives continuous motion.

The designer needs to be able to control the rate at which frames are
drawn on the screen of the graphics terminal. He needs to be able to see the
animation process happen at full speed-~the same speed as the display would
appear on the target device, at any reduced speed, or on a fraxe-by-frame

-31 -

LA
ULEUGURCOL

e LR T T T N VT e e ey wy wwey

basis. These different rates aliow the designer to carefully evaluate his
display, perhaps identifying problems only partially noticed at full speed.
At any time he will be able to pause, restart, skip forward, skip backward,
change the speed, or abort the animation process. He will also be able to
request that the data be read in reverse instead of forward. These different
rates and techniques give the designer full control of the animation process.

While the animator is in the pause state, it will freeze the gathering of
test data so that no test data are lost. While the animator is rr.ning at
full speed, intermediate values of parameters which are generated faster than
the frame update rate are ignored. However, when the animator is running at a ‘
reduced speed the intermediate values will not be ignored; a frame will be
generated for each set of data values.

While the animator is in the pause state, the designer will be able to
manually enter the values of parameters so that he may test 'impossible'
conditions. He will be able to assign one or more parameters to a yariable
input device, such as a rotary or slide potentiometer, so that he may
incrementally change their values and see these changes reflected on the
display. The designer will be able to increase or decrease a scaling factor
which controls how much change in the input device 1is needed to produce a
proportionate change in the parameter. If desired, the designer will be able
to continue to use the variable input device to control the parameter while
the animator is running. This variable input device frees the designer from
the need for keying in individual data points, allowing him to concentrate on
the actual evaluation of the display.

The animator will verify that at all times the display design conforms to
the restrictions on size, shape, and color specified by the designer. Again,
the display shape and size will be mapped to screen characteristics of the
graphics terminal. The designer shall be able to magnify and demagnify the
display design during the animation process so that he can more closely
inspect particular aspects of his design.

2.4.3 Code Generator Requirements

The system will provide for the automatic programming of the target
device. The code generator will combine the formal display description with
the target specific code and translate them into the target device's
instruction set. This program is the executable display description. When
more than one device is available as a target, the code generator will allow
the designer to specify the target by name so that the correct instruction set
is used. y

The code generator will also map the display design to the specific
capabilities of a given target device. This process will include mapping the
palette used in the display design into the palette of the target. Warning
messages should be given to the designer if the number of colors used in the
display design may not be shown on the particular target device. This mapping
of colors needs to be defined so that the relationships between colors are
preserved as well as possible.

- 32 -

e LL.&-MM&*M%{L&%MM

e Another mapping will be to match the size and shape of the display design

ﬁx to the size and shape of the target device's display viewing area. This
Y mapping should be as close to one-to-one as possible so that a line 2 inches
?ﬁ. long on the graphics terminal will map to a line 2 inches long on the target
ﬂg‘ device. 1If the display will not fit perfectly, the display design will be
. rescaled to fill the target's screen as closely as possible. This scaling
Ly will affect the sizes of all objects in the display equally. Warning messages
;uﬁ{ should be provided in such situations.
*
(¥ . Another requirement for the code generator subsystem is that it allow the
;&@' programmer to specify which parameters named in the formal design description
' are to be matched to which external values gathered from sensors or other
K= equipment. These external data values such as sensor data and other inputs
Qﬂ i will be gathered using a subroutine written by the maintenance programmer.
:3 The data gathering will happen in real time, with the target device's screen
,‘ti being updated at rates in the realm of 50 Hertz——or greater--in response.
AN

The code generator will be able to produce executable code for a variety
s of specified target devices. The programmer will be able to add a new device
% at will. Code will be generated from the knowledge of two items: the

a' instruction set of the given device and the name of a routine which sets the
?\ chromaticity and value of individual pixels. Such a routine would be written
.sh‘ by a maintenance programmer for each different target device. If the target
- device provides powerful graphics functions, the compiler will be able to take
ﬁ“_ advantage of these functions through more routines written by the programmer.
{:- Such advanced routines are not mandatory to automatically program the target,
o but they may allow more complicated display designs to be updated at high
<3 speeds.
oo,
Under certain situations a target device may not be supported by the code

A generator. This may occur when the target is new to the facility and the code
o \ generator support software does not yet know the imstruction set of the new
;ﬁp target. Another situation may occur when a display design is very complex and
5 . so the executable description must be highly optimal to achieve the desired
B update rates. In these cases, a programmer may perform the operation of the
) code generator by manually combining the formal design description with the
R target specific information.

e

~n
Eﬁq 2.5 Hardware Requirements

7y, These are the requirements for the system hardware, including input
'i- devices, output devices, and the host computer hardware. These requirements
; 3 , are not detailed because many choices are implementation specific. In Section
ey 3, we present further specifications for the hardware after examining the more
WO important implementation issues. This reflects the decision ¢to choose
e - hardware only after the system is well defined. The capabilities of computer
Yy hardware must be considered when making implementation-specific decisions.
ﬁ;. These considerations must be postponed as long as possible so that they do not
#p&- overly influence the usefulness of the entire system.

' or.l,

o

::: - 33 -

L

?"l
io

-

~ o s
-
P L U AN B

e e i Lt b e e et)t
R o CE O .".::')-‘"" WHAVANY “"3

y TP

. ;! TR 0N 0
LI’*'I"‘I’!’I". ’:‘ls. '3‘.', .v .!‘\" .c.l’n.il':.l g,l‘o *a,! 'u.‘,

2.5.1 Input Device Requirements

An input device 1s any piece of hardware which allows the designer to
express commands to the system. Example input devices include keyboards and
graphics tablets. These input devices must be easy and natural to use. Also,
a minimum number of input devices must be used; more than two or three invites
confusion and fatigue by forcing the designer to switch often from one to
another.

Three different types of input are needed for this system. The majority
of the time spent with the system will be during the design phase, and during
this phase much of the time will be spent placing such items as the ends of
lines or centers of spheres. A device which moves a cursor on the screen of
the graphics terminal is needed. The cursor may then be wused to place
endpoints and other positional information. Example input devices include the
mouse, graphics tablet with pen or puck, joystick, thumb wheels, and 1light
pen.

Another type of input will be for entering textual information. Such a
device would allow the designer to enter names of display designs or numeric
data. Examples of such a device include the keyboard and speech recognition
systems.

The third type of input is the variable input device mentioned in the
section on animator requirements. This device will be attached to a display
input value so that as it moves, the value of the display input changes.
Examples of such a device include a rotating or sliding potentiometer.

The above types of inputs overlap. The keyboard could be used to move
the cursor on the screen. A mouse, joystick or light pen could be used to
select a character from a list or to recognize characters handwritten by the
designer. However, combining both inputs into one can lead to an awkward |
operator interface. To move the cursor from the lower left corner to the |
upper right using the keyboard may require many keystrokes and is not nearly
as direct as repositioning a pen. Also, pointing to one character from a list
of over one hundred means time-consuming scans of lists. As an alternative,
the system could recognize characters hand-drawn using a mouse or light pen.
However, this would require an often lengthy training session before a new
user could begin to design. Hence, it would be preferable to provide both
types of input separately, perhaps allowing each to overlap to a limited
extent.

Positional information, su h as that provided by a light pen, may be used
to oontrol the variable input, where wmoving the cursor on the screen is
equivalent to twisting a dial. The difficulty with using the positional
information in place of a separate device is that often the designer will need
to control several display input values simultaneously. This could be
difficult if only one controller were available. It would be better to have a
separate device with several potentiometers all in the same package which 1is
used only by the animator. Too many potentiometers will result in confusion
as to which corresponds to which input value, so no more than six to eight
need be provided.

-3y -

bl

- "

-

e

2

- -

2.5.2 Graphics Terminal Requirements

The graphics terminal will allow the designer to monitor the process of
creating the display design and to observe the display as it will appear on
the target display device. It must be able to match, if not exceed, the
target device in all aspects of graphical image generation.

2.5.3 Hard-copy Printer Requirements

The designer needs to be able to make hard-copy printouts of the static
images and the formal display description for evaluation by others and for
archival storage.

2.5.4 Host Computer Requirements

As in any system, the host computer must provide adequate resources to
support the application. More detailed requirements will be specified in
Section 3.

2.5.5 Target Display Device Requirements

Very few requirements exist for the target display device since the
purpose of the system is to supply whatever information the target device
needs to draw the display design. The most important requirement is that the
instruction set of the device be available to those who write the support
software for the code generator as mentioned in Section 3. H>wever, the
general characteristics are herein described so that the reader will know for
which target devices the system will produce output. The following paragraphs
specify important aspects of the target display devices. They describe how
images are made to appear on the screen and how the images are passed to the
electronic hardware which transfers the image to the screen,

In most cases the target will be either flat panel (dot-matrix) or raster
(cathode ray tube) devices. This means that images are shown on the screen as
a large number of closely-spaced, colored pixels. This is opposed to vector
devices which draw lines only. Vector devices are not normally used in
applications which require images to change rapidly because they are designed
for very high quality images, not for very high speed. However, the
technology is changing and the system may one day need to produce output for
such devices. No major changes will be needed in the system to support vector
devices because all that would be necessary 1is vector instead of pixel
definitions of how entities are to be drawn in the target specific code.
Where a circle was before drawn using a large number of pixels, it would now
become a large number of short, straight lines.

The other characteristic is that most target devices are "double-

buffered.® In this context, a buffer is a place in which an image may be
stored while it is displayed on the screen. Double-buffering means that while

- 35 -

PRI IIRORI

one frame is displayed on the screen from one buffer, the next frame is being
drawn internally into a second buffer instead of directly on the screen. When
the new frame is complete, the two buffers will be switched so that the second
buffer is now displayed and the first buffer is redrawn with another frame.
Thus the viewer does not see the images being drawn on the screen piece by
plece, but is presented with the entire frame at once. If he were to see the
screen blank out and then be redrawn, the images would appear to flicker on
and off. This technique is not necessary if graphics may be generated at
extremely high speeds or if the displays are extremely simple, but it is
generally needed in the majority of situations.

2.6 System Usage Requirements

In this section we will show, in general terms, how the designer is to
use the system. See Appendix B for an example session which shows in detail
how a simple display would be created.

2.6.1 Overview

A display is usually designed according to the following steps. The
designer first roughs out a sketch of the display design on paper. He then
uses his sketch to draw the graphic images, adding the appropriate dynamic
controls, into the system using the editor. He next invokes the animator to
evaluate his design using the supplied test data. The preceding two steps are
repeated until the design is satisfactory. Finally, the designer invokes the
code generator subsystem to generate the executable display description for a
specific target device. If the system does not contain the necessary data for
the target device, a programmer may take the formal display description and
perform this process manually.

The following is a general description of how the editor, animator, and
compiler would be used. This section merely specifies the general actions of
the designer; the actual details are very implementation dependent.

2.6.2 General Usage Requirements

The system will use menus, prompts, and on-line help to make it easy for
the povice to learn. It may be assumed that the average novice has previous
experience with computers (use of word processors and other similar tools) and
a technical background. He should be able to learn enough commands in half an
hour that he will be able to create and animate a simple display such as that
shown in Appendix B. As mentioned above, ease of use is also mandatory so
that the intermittent designer does not need to relearn the system every time
a new display is designed.

- 36 -

2.6.3 Using the Editor

As in all other parts of the system, the editor will be menu driven. The
designer will not need to remember commands, and on-line help will always be
available. It must always be possible to abort a command in such a way that
the designer does not lose any work except that directly associated with the
command. The designer will work on only one segment (both its static graphics
and its dynamic controls) at a time,

The designer will be able to use items from the 1library of modules,
segments, icons, and user~defined entities in a display. A previously stored
item will be retrieved by either its 4identifying name or by selecting a
picture of the item from a menu. Since the library of items at a given site
will usually become quite extensive, the editor must support the nesting of
libraries within 1libraries so that, for example, all compass needle icons
could be in one library with those used in airplanes in one sublibrary and
those used in ships in another. This is similar to the nesting of directories
within other directories as is available in most modern computers' operating
environments.

It will be possible to display or hide the various other segments of a
module while working on a given segment; displaying another segment can help
in aligning centers of reference or entities, and hiding other segments can
reduce the clutter on the screen. To further facilitate the careful
positioning of objects, the editor will provide temporary grids and other
positional cues. The animator will also provide this capability.

2.6.4 Using the Animator

After invoking the animator, the designer will specify the source of test
data. He will also give the initial ypdate rate for the entire screen as full
speed, as a fixed number of updates each time a key is pressed (so that the
designer may step through frame by frame), or as x updates every y seconds.
He will also be able to specify the use of variable input devices to control
specific parameters as defined above.

Whenever a special key is pressed, a menu will be displayed to allow the
designer to continue, stop, start over, skip ahead, move back to repeat part
of the display, change the update rate, run the display in reverse, or to
respecify which parameters are controlled by variable input devices.

2.6.5 Using the Code Generator

The designer will enter the name of the target machine on which the
display design will run. A programmer will need to create subprograms which
define how the target devices will draw the display design, and a subprogram
which gathers the data from the external environment to pass the parameters to
the display subsystem. The code generator will gather all of these and output
the desired code using the vendor supplied target instruction set. The only
other interaction takes place when the designer requests the target device to

- 37 -

AN
H’: perform impossible tasks (such as using more colors than are available),
Tt causing the system to generate error messages to the designer.

R This task may be performed manually by & programmer if necessary.
Automatically creating the executable code for the target display device can
sometimes result in slower update rates because automatic code generators do

fﬁ? not generally produce totally optimal code. An experienced programmer can
QE‘ usually achieve faster update rates. For very complicated and time-critical
gﬁ display designs, the programmer may need to perform the task of the compiler

< o subsystem manually. To do so, he must have access to the formal display
description at the symbolic level.

2.7 System Expansibility Requirements

Any system which 1s used for a significant amount of time will need to be
updated to provide new capabilities. This is why it was specified that the
system be expansible. As the field of display design becomes more advanced,
new requirements may be added.

.
Pan
el -

,..':.,".,.-
e

>
L

As specified in the requirements above, the system supports the automated
design and programming of electronic displays. The system does not
» automatically design or improve the displays, but only helps the designer by
E,# providing more powerful tools than a sketch pad and pen. After the field of
> artificial intelligence becomes more advanced and after the science of
i designing optimal displays matures, this system may improve toward suggesting
it improvements in the display to the designer.

1

e Such capabilities lie within the foreseeable future. An expert system
R could incorporate the knowledge of experienced display designers to recognize
it poor designs. It could recognize objects that are positioned too closely,
syl information that changes too rapidly, and use of too many colors.

Some displays may provide optimal transfer of information to the display
user but may be too complicated to be updated in real time. Another expert
B system might be used to help guide the reorganization of segments in the
gtV display so that higher frame speeds may be achieved. This expert system might
recognize nonmoving images and reorder transformations.

Later it may even be possible to have a descendent of this system design
g the display with minimal human intervention. The system would prompt the
ay designer for what inputs are to be provided and what information is to be
displayed and then produce the final product based on previous display
Ny designs. An evaluator would then suggest modifications to the system. These
3& modifications would be incorporated in the current display and also added to a
knowledge base so that the system 'learns' how to make better displays.

N - 38 -

Y

::z,s‘ 3 System Implementation
2
“t;z" The requirements presented in Section 2 define an idealized system to
":' . automate the programming of real-time electronic displays. These requirements
vere determined to be necessary for the creation of displays, without regard
r!i{““e‘ to whether they were feasible using today's technology. While many of the
:"L,::‘ . requirements are supported by current techmology, some require a development
,-‘;1‘,: effort in which the cost exceeds the return in savings. Furthermore, some of
al the requirements need technological breakthroughs before they can be
S implemented. While it 1is 1likely that the breakthroughs will happen, the
system 18 needed as soon as possible and a delay is undesirable. A system
o fulfilling most requirements today is preferable over one fulfilling all
:::.;: requirements in 10 years.
¥
“::::: In this section, we present a possible implementation of the system
j.f}i! containing a large subset of the requirements and maintaining usefulness. The
primary goal is to show herein that a useful implementation of the system is
feasible at the present time. A secondary goal is to define an upper boundary
f:‘fb:; on the amount of developmental effort which must take place by rejecting those
;::l approaches which are more costly than others. We recognize that this
:g‘l'::r implementation is not the only or perhaps even the best one.

This section contains the following five subsections:

o The Problems of Implementation,
o Data Implementation,
R 0 Process Implementation,
: o Hardware Implementation, and
0 A Brief Description of System Implementation.

,:,q.: The first subsection, The Problems of Implementation, details the problems
’!,»:\ which would be encountered by system developers and suggests solutions to
:g:;:l those problems. The Data Implementation section describes the implementation
".'«Z?: of the various data. Process Implementation shows how the processes which

create the data may be implemented. Hardware Implementation contains
: suggestions on the selecllion of hardware which will support the above process
't and data implementations. Finally, A Brief Description of System
s, Implementation summarizes our suggestions for system implementation.

o 3.1 The Problems of Implementation

ﬂ. o

#d

:o:l.’ First we will explain why some of the above requirements are too

:fv... difficult to implement by describing the current technology and its

e shortcomings. Then we will show how these obstacles may be overcome using as
much off-the-shelf technology as feasible. This section is divided into the

= subsections:

n.‘q;;,'{

s

'c "v“

g:‘:#; - 39 -

)

o

L

St vy . X \ Lt () s "o I AL ¢ -~ * S VL S ANt AT et AT A
LS l.?,.'.-'\fu it ,“ﬁ' WS "l?' A4 “_\.‘4‘,7.‘.‘1“5'15"7.5“ 4 R I H N ILabdt it , !i.l‘ql!.q C‘!),;, ,’Q,l.

V W i, “. ‘h. 3

SEp

RRRR "

LI

00

«

AN AN

o -

A
'):"
b

00 T TNy B " e O O i ! B O o O , Co% G0N0
A SO AN L""A’UE'. -‘0'4'.!'\"! s W< Al -i’o,' !‘J‘li‘!- B .h',.h L "N".li »n‘t' P .‘ ALY M " [er) .0 \!‘. > *

o Current Technology and Its Limitations, and
0 Circumventing These Limitations

3.1.1 Current Technology and Its Limitations

Graphic displays present unique difficulties to the engineer because of
the large number of operations which must be performed within a short period
of time. For instance, to draw a cube the computer must first calculate the
positions of the end points of each edge. These positions are used to
determine which faces are hidden from the viewer. The viewable end points
must be translated, rotated, mirrored, and scaled from the world coordinate
system in which they are defined into the screen coordinates, This results in
the definition of a set of polygons which must be displayed. These
rectangular polygons are then intersected with the clipping boundaries to
create an irregular outline of the face which will fit within the prescribed
limits. Finally, the outlines must be filled in with the appropriate color.
Thus the image of the cube is presented to the viewer.

Each step requires multiplication of matrices and decision making, and
the large number of multiplications required combined with the pixel-by-pixel
nature of the final image would have a significant impact in the computation
time required to produce each new display franme. Multi-million dollar
computers exist for which the large number of calculations pose no problem,
but such computers would produce very little payback. As the power-to-price
ratio increases, many of the operations will become more feasible at an
acceptable cost. This 1is why we differentiate between the ideal and the
practical requirements. The technology is expanding too rapidly to allow
considerations of feasibility to drive the ideal system requirements.

Due to the limitations of the current technology, intersecting the face
of the cube with the clipping boundaries is one of the more time consuming of
the above tasks. This is because every line in the image must be intersected
with the clipping 1limits, Clipping at the abstract level is the process of
finding the intersection point or points between an equation and the boundary
and then redefining the clipped equation with the intersection points as the
new ends of the lines. Clipping against arbitrary boundaries is not
implemented by current technology because of the complexity of finding the
point of intersection between two general equations. For instance,
intersecting two cubic-spline surfaces would require advanced numerical
techniques similar to those involved in finding 2zeros of equations. Such
intersections wusually involve making an initial guess and refining that guess
to the desired precision. The refinement can require tens or hundreds of
jiterations to find one point, let alone the hundreds of points needed by the
systen.

Efficient algorithms exist to perform this task, but they apply only to
boundaries which are rectangular and parallel to the coordinate system. These
algorithms compare end points of straight lines with the coordinates of a
rectangle defined from minimum to maximum x, y, and z values. These simple
comparisons allow a large number of lines to be clipped rapidly.

- 40 -

W
\ ’

:x Another operation which is time consuming is that of determining hidden
g, surfaces in three-dimensional scenes. One technique is to store the apparent
:5 distance of each pixel along with its color. When two pixels collide, such as
' when a tree is behind a rock, the apparent distances of each are compared and

the further pixel is thrown away. This is very simple, but many screens have
¢ a resolutiopn of over one thousand by one thousand pixels. Each frame on such
a terminal could mean the storage and comparison of well over a million

distances.
¥
@ However, methods do exist which quickly determine which faces are hidden
" in three-dimensional shapes such as a cube or a pyramid. These methods are
N3 based upon determining if the vector perpendicular to a particular face 1is
@ . pointed away or toward the viewer. This technique will remove totally hidden
‘4 surfaces such as the back side of a house, but does not apply to partially
1 hidden surfaces such as a tree in front of a barn. Partially hidden surfaces
:i may be shown in two ways: by using the apparent distance technique defined
above or by simply drawing the hidden surface in full and then drawing the
& other surface on top of the hidden one. The latter method of drawing objects
: in the background first will always work, but is not necessarily feasible
'J because of the increased complexity in the code. The code is much simpler
& when objects in an image can always be drawn in the same order, and
:; rearranging the objects would be time consuming for complicated displays.
" This simplicity in code leads to much higher update rates.
‘."
a Transparency could be implemented using a similar technique where the
color of the transparent (or partially transparent) item is given a unique
‘_ value. Collisions result in a blending of the colors instead of replacing the
! old with the new. However, the required calculations would be even more
extensive since the old color must be retrieved before the new can be
o specified and since this would happen on a pixel-by-pixel basis. Another
L technique to show transparency is to define a sieve so that only parts of the
\ﬁ background show through the transparent object, giving the effect of looking
¥ through a screen door. Many commercial graphics terminals support overlaying
‘o such sieves in the hardware. This technique does not allow a full range
) because only a certain set of sieve patterns are effective; once the holes
o become too far apart, the eye separates the two colors. Also, using the sieve
technique to show transparency would not produce a realistic image when
:2 viewing through multiple objects which are partially transparent.
)
b; Smoothly shaded surfaces pose yet more problems. Many algorithms exist
today which break a curve into discrete panels and then interpolate the colors
X across the surfaces. These algorithms, due to their pixel-by-pixel nature and
:S the complexities of interpolation, are also too slow to allow images to be
K displayed at frame update rates that are acceptable. The mapping of textured
g‘ patterns to surfaces is a generalized form of continuous shading and is thus
) even more beyond current capabilities.
§; Finally, showing the diffuseness of an object's surface would require
i tracing a set of rays from each light source to the viewer, following each as
5 it reflects from object to object to determine its final apparent color. Such
ﬁ' ray-tracing algorithms could also facilitate showing transparency, smoothly
il shading objects, and suppressing hidden surfaces. However, the algorithms are
9;
. - 41 -
o
o
i
o
N x s o oy

b 0 0 75 W Py | Py o, ATy Vg A " P T . —am
ST WA RLROET A S e 'v!!',u‘v ‘«f.ﬁ‘\’-ﬁ‘u\ % L SIS ',.I!ofi'o.' Z A- ‘ a & O 7 3 N S L S ".

)

E Ik Ml ol b ed

\

-y am o~

too slow for use in real-time environments, even when a supercomputer is used,
due to the probabilistic nature of diffuseness. Many of the traced rays never
reach the viewer because they bounce off the object away from the viewer, so
tens of thousands of rays must be traced to create accurate images.

The above processes are difficult to perform at high speeds because of
the 1limitations of both the target devices and the graphics terminals.
However, the graphics terminals usually do not have the same capabilities as
the target devices because the latter are often developed especially for a
particular application to take advantage of state-of-the-art--and consequently
more expensive--technology. This means that the graphics terminals will have
difficulty animating some display designs that may be perfectly capable of
being executed on the target devices, especially in the area of the speed at
which the frames are updated.

3.1.2 Circumventing These Limitations

Two approaches are suggested below to circumvent the above limitations on
the graphics terminals. One is to use hardware to implement those operations
which involve large numbers of calculations. However, not all operations can
be implemented in hardware. So the other method of circumventing a limitation
is to identify which requirements are not absolutely necessary at the present
time and postpone their implementation until they are supported by technolcgy.

3.1.2.1 Use of Hardware

The algorithms mentioned above are too complicated and therefore time
consuming to allow them to be implemented in software for real-time
environments using the current technology. However, custom computer chips
that allow these algorithms to be calculated in the hardware of many graphics
terminals provide reasonable performance at a cost-effective price. Many
terminals have hardware which perform the scaling, mirroring, rotating,
translating, hidden surface removal, and simplified clipping operations.
Also, many have hardware which will fill polygons and depth-cue lines,
Furthermore, many support the "double-buffering®™ mentioned in Section 2.

Many graphics terminals also improve screen update rates by storing the
graphic representations of the objects which comprise an image in "display
lists", A display list is simply a list of high-level descriptions of the
parts of a graphic image. When a particular frame is to be drawn, one command
sent to the graphics processor will cause that processor to draw the frame on
the screen.

Even wusing the above techniques, many of the other controls and
attributes specified in the requirements section are not supported in the
currently available hardware or are too slow to be of practical use. The list
of unimplemented requirements includes clipping against monrectangular shapes,
diffuseness, and full transparency ranges. Smoothly shaded imaging is
available, but the hardware is still too slow to support update rates which
would permit the user to evaluate the display properly.

- 42 -

3.1.2.2 Reduction of Requirements

The other option is to identify which requirements may be deferred until a
later time. Given the characteristics of target display devices on which
display designs are currently executed, some of the above capabilities will not
be used in the near future. Of those which could be used, some may be left out
initially in the interest of obtaining the system as soon as possible.

Some of the more advanced attributes and controls specified in Section 2
of this report may be left out. Section 2 implies that there are no limits on
the use of different colors in display designs. However, unlimited
availability of different shades and hues is only necessary for total realism.
For the current display designs, a minimum of 256 colors (where color refers to
the combination of hue, saturation, and gray level) would be adequate. Of
these 256, at least 32 hue and saturation combinations with at least 8 gray
levels should be provided. This represents the bare minimum which would be
necessary--the provision of a more complete spectrum is encouraged.

Clipping along rectangles which are parallel to the screen coordinate axes
is mandatory. It is needed by any display which might extend beyond the
screen. It is also needed to allow one instrument to partially overlap another
or to allow displays of three-dimensional terrains to occupy the screen with
displays of instruments. However, circles and more general shapes are not as
vital as the rectangular limits.

Transparency can be implemented with only four or five different levels
provided. Though the eye can differentiate between more, such a subset would
allow transmission to the viewer of hidden objects. This represents the true
need for various levels of transparency. More levels reflect the desirability
of greater realism, but such realism is not absolutely necessary for the short
term.

Diffuseness also is not absolutely needed for the short term. Diffuseness
promotes realism in displays as objects can be recognized more easily with this
information; but, again, such realism is nonessential for the short term.

Finally, it probably will not be possible to draw displays at the same
rate in a commercial graphics terminal as in the state-of-the-art target
displays. As a minimum, however, the graphics terminal should be able to
achieve at least 25 frames per second when the target can draw 40 to 50 per
second. This minimum allows evaluation to be useful even though the designer
may perceive problems which will not appear in the final product because images
do not move across the screen as smoothly.

All requirements which were not specifically addressed above should be
implemented in full. This especially applies to those which provide ease of
use, The success of any system is very dependent on the user interface.
Making a system difficult to use by ignoringsreadily available technologies and
techniques in order to save on development costs is generally a poor practice.
Allowing the user to voice commandes instead of typing them would require the
solution of many problems facing those developing speech recognition systems.

- 43 -

A i e el DR A ih* ™t A “ Sl i “ el * dhe & Rk i And Radt Bnk A2k Sad Rt Sod S0 Al Bod Aof Sob Ron 2.0 8.3 o1

However, the use of menus or graphics tablets does not require any
technological breakthroughs. These available techniques for providing an
effective user interface must be used to their full advantage.

3.1.3 System Implementation Partitioning

A system which implements the above reduced requirements could be custom
built from scratch, but such a strategy would lead to a longer development
time and higher system cost. A good implementation of any major system is one
which builds upon as much previous work as possible. The desirable nature of
graphics in many applications has lead to much development, and many of the ‘
components of this system are commercially available. Such components may not
fully support the minimum set of requirements, but extensions may be made so
that they do.

In the rest of Section 3, we present a more detailed system partitioning
which takes advantage of the current technology, maximizing strengths and
minimizing shortcomings.

3.2 Data Implementation

This section describes the implementation of the various data in the
system. These include the display design, the formal display description, the
executable display description, the library, the test data, and the target-
specific code. The following sections parallel those in the section on Data
Requirements.

3.2.1 Display Design Implementation

The display design is a concept. Questions of how to implement it are
actually questions of how the system will support the hierarchy, attributes,
controls, and other aspects of the display design. As mentioned in Section
3.1.2.2, some attributes and control information associated with display
designs may not be supported by certain portions of the implemented system.
These portions must be able to expand to include unimplemented attributes and
controls as technology permits.

The only other aspect of the display design concept which needs to be
addressed 1s how user-defined entities will be supported. They will probably
be defined by computer code written in a high-level programming language. For o
example, if a view of the terrain is needed in a particular display, a
programmer will write a subroutine which generates the scene on the display
device given the relative position of the viewer. Since terrains are complex -
and since the amount of data needed to generate the scene would be extensive,
the subroutine will probably need to access a large data base stored on such
high-volume media as optical disks. Such a data base could be manipulated by
the system, but this would be very inflexible, Thus user-defined entities
will often need to be generated by computer code. The implementor of the
system must give examples of how to create user-defined entities so that the
maintenance programmer can create those needed for a particular application.

a

--..-*n-\.-¢.-.'....‘< .-.\...- ALY
AT L GO CS O oY .-.-':-".\lﬁx‘ti

X 3.2.2 Formal Display Description Implementation

"9
i) As the pivotal data in the system, the form of the formal display
S description can help or hinder the implementation of the remainder of the
: system. It must be in such a form that it may be easily created by the
}i editor, easily used by the animator, and easily translated by the code
%ﬁ generator into the instruction set of the target device.
o There are several ways in which this formal description may be specified.
R One is the use of some special code specified by the implementors of the
system. This is called the ‘'ad hoc¢' technique below. Another 1is to use a
;:: standard format such as the Initial Graphics Exchange Specification (IGES). A
'j{ third method is to use a programming language such as Pascal or Ada(®). We
,;; will discuss below the advantages and disadvantages of each technique.
e
L The ad hoc technique has the advantage of brevity. The special codes
. might describe a 1line from the point (3,23) to the point (10.2,0.4) as
D "1,3,23,10.2,0.4", and a circle centered on the point (-1.7,-223,5) with a
,ﬂ radius of 0.04 units as "2,-1.7,-223,5,0.04", where "1" and "2" denote a line
*: and a circle respectively. This can be very compact because no unnecessary
'jh information 1is provided. The minimum number of symbols needed to specify a
t-f circle i1s one denoting a circle, those specifying the location of its center,
lx} and one to specify its radius. However, this brevity complicates the
Y programmer's task when manually writing the code for the target display
{{j because he must recognize the shapes from the symbols alone. If he cannot
;:; remember a particular code, he must look it up in a manual. This can be very

time consuming. To remove this problem, a less compact but more descriptive
format can be used.

>

i

The second technique, that of using a more standard format such as IGES,
is essentially equivalent to the first except that it is already specified for

.
‘ii the system implementor. This format can also be compact though it is normally
N not quite as compact as the ad hoc format since the standard format is
e designed for any application involving graphics. For example, a line entity
:& in the IGES format 1is specified by eighty characters, many more than the
" eleven used in the above example. Where this technique loses compactness, it
;;f gains in allowing the system implementor to use previous work. However, as in
. j the ad hoc technique, use of a standard format necessitates that the
:Q" programmer learn which symbols represent which entities. This may be a more
£ difficult task because the standard format may not support the display
. hierarchy, requiring the system implementor to improvise so that this
‘fz information is transferred to the programmer.
g
5:} The final technique is to use a standard high-level programming language.
'¢. In this case, the description of the above line is an instruction such as

DRAW_LINE(3.23, 10.4). This is much more readable to the programmer because
of its directness. However, it is less compact than the ad ho¢ technique.

® mpda®™ is a registered trademark of the U.S. Department of Defense (AJPO).

o - 45 -
e
o
of 7y
)

M
O

.....

K, oy - et v W Lo e e L
"0, ¥ s, U] ' Pou ? Y ARG LR\ IR
B O N 5 S WL SO PN i w0 S5 ¢ -

& Another advantage of using a standard high-level programming language i1s that
S the animator and code generator subsystems are reduced in complexity. This
will be shown below in the sections describing the implementation of each.

w‘.:

o Each of the above techniques can be made to work in the implemented
system. However, the wuse of a programming language is the most promising.

‘:e While the others can be made to be readable, the programming language most

xj readily enforces readability. Also, it lends itself to using commercially

Ay available software as shown below. The consideration of compacting the

9* information to save space is not as important as one might suppose. The
increase in space is offset by a decrease in system development costs because

o of the use of ncndevelopmental components. Since mass storage of information

R is readily available at reasonable costs, considerations of ease of

:ﬁg development and usage are more important. Finally, a programming language

B\~ supports specification of the display design at multiple levels.

&

)

* Once the decision is made to use an existing programming language, the

N next step 1is to determine which language to use. A large number of likely
candidates exist such as Pascal, Ada, and FORTRAN. Essentially, any language

; would be capable of formally specifying display descriptions.

NS

;:. Ada presents itself as the best choice for two primary reasons. First,

; the Department of Defense (DoD) has mandated that Ada be used for all software

written for use in embedded computer systems. If any other language is to be
R used, special permission must be granted by the DoD. Second, it incorporates
many advanced features which facilitate the description of display designs.

;}- As a result of the first reason, programmers must be familiar with the
o language if they plan to work on DoD software projects, so very little
A2 training will be necessary before they are able to understand the formal
- display description. Furthermore, the language will have extensive support
N within the defense-related industries, so many of the pieces of the systeu
‘*b which will work with the formal description will already be developed.
iy Ada also lends itself to the specification of the formal description
j) because it incorporates many important capabilities. It was specifically
-~ designed for embedded microprocessor environments such as the target display
\j devices likely to be used with this system. This means that low-level control
AL of the microprocessor is readily available. Its multitasking capabilities
5* allow a clean separation of data gathering and screen updating in the formal
=¥ description. But most importantly, its packaging concept greatly reduces the
> complexity of specifying the display design at multiple levels of detail.
-
}: 'Fackages' are collections of subroutines which perform related sequences
ﬁa of actions. Each package specifies how other subroutines are to invoke those
.r: within the package and how each subroutine within the package is to be
ey actually performed. Thus the package concept separates the interface from the
‘\ implementation, so the implementation of a sequence of actions can be changed
- without affecting the rest of the program. For instance, a package of math
‘5 routines might provide a function which evaluates the arccosine of a number
o~ using a series expansion. This might then be used in another function which
b calculates the angle between two vectors. If at some later date a polynomial

expansion is determined to be more efficient for evaluating arccosines, the
new method could be implemented without affecting the angle evaluation
» function in any way.

) - 46 -

e

LI

PR RS Y N I RO
'\‘.' ." .".w.v. e .'t"q’-'n > " »

T R ORI SV RERTRVAE "Ry S N A PO R SO N Oty ﬂ
T A L s T A A DAYy

gg: The packaging concept is useful in this application because of 1its
f&& ability to express the layering of the formal description. To draw a cube,
Wiy one would invoke a DRAW_LINE subroutine which might in turn invoke a

y DRAW_POINT subroutine. Hence, the display is defined at the level of a cube,
a sequence of lines, and a set of pixels. Furthermore, if a particular target
device already knows how to draw a line, the implementation of the DRAW_LINE

:ka subroutine will be an execution of the appropriate instruction instead of a
ﬁs series of calls to the DRAW_POINT subroutine, without changing the drawing of
Wy a cube. Each target device would have a set of packages which allow the
:éd system to build the display design on that target's screen. Ada thus becomes
N a "virtual interface", i.e., an interface which allows the formal description
?g to be target independent.
),
o
vl':.l
:RS 3.2.3 Executable Display Description Implementation
oy This will be a file of machine-~level instructions for the target display
q}. created by the code generator subsystem. This file may be transferred to the
e target display device in any one of several ways, depending on the
KL installation and the requirements of the particular device. One method is to
:&. use software which transfers files from the design system to the target device
I over a direct cable link. Another 1s to load the executable code into a
:', programmable read-only memory (PROM) device which would then be placed in the
}f!}:\ target display device. These are two of the standard techniques used in the
R XY, industry when programming embedded microprocessor devices. There are many
‘EE other methods, and the choice of which to use will depend heavily on the
y particular situation.

! 3.2.4 Library Implementation

?& The format of the library will be determined by the needs of the editor
! subsystem. It will be specified by the implementor of the system.

:-"
‘:::: 3.2.5 Test Data Implementation
"..' .'_
. The format of the test data is determined by the needs of the animator.
@0 It will be specified by the implementor of the system.
ef
:k%' . Test data may be created in any one of several ways: by passing a
&?. magnetic tape recording of an actual run of the various subsystems through a

program which filters out all unnecessary data, by gathering the data from the
various subsystems in a simulation environment, by having a host computer
e simulate the generation of test data from calculations, or by the user
interactively entering new values for data points in the proper sequence using
a special program.

':la -u?-

BRI CH AR st e S 3% W e PP e e O e A A RN o TR
L e T I T TR S A N A RSO OMOANEL I AT

. -
’!‘o N l'.."'l'! I'?'Q. “.'

These various techniques allow the user to quickly generate data to test
a particular design under a variety of conditions: when the test data must be
3 very realistic, when he must test 'impossible' conditions, and when no actual
“5 equipment yet exists from which to gather the data. Such flexibility will
" improve both the accuracy and the speed of the evaluation process. The system
needs to be open ended to allow a particular facility to devise its own
W, techniques in data generation.

3.2.6 Target-Specific Code Implementation

"

-? The target-specific code will be a set of Ada packages which state how
; each target draws the various entities such as points, lines, and arcs as
W mentioned in Section 3.2.2 above. Each of these packages will be written by a

{}

:k maintenance programmer. Alternatively, the vendor of the target display
device can write these packages. The key 1s that once the problems are solved
for a particular device, they remain solved. The target-specific code also

s:, contains data-gathering subroutines for use in the final environment. These
:' are also created by a maintenance programmer.

L]

:ﬁ An important aspect of separating the formal description from the
- target-specific entity-drawing routines is that this allows the programmer to

use more than one approach toward actually drawing the entities. Routines
which draw lines, for instance, can either draw very accurate lines slowly or

~j less accurate lines quickly. On raster graphics display devices, quickly
k> drawn lines have a "stair-step" appearance because of the discreteness of the
' pixels. "Dithering" algorithms exist which draw better lines by controlling

the intensities of pixels around the lines as well as those directly on the
line, varying the intensity of a pixel with its distance from the true 1line.

’ Dithering algorithms are slower but produce higher quality images. The
:% maintenance programmer, when providing the routine which draws a line, can fit
X the tradeoff between accuracy and speed to the needs of a particular
" application.

The implementor of the system needs to provide examples of the target-
' specific code so0 that the maintenance programmer will know how to add a new
j target device. The examples also need to show different ways to draw such
N entities as 1lines and circles with tradeoffs between speed and accuracy.
. Furthermore, the implementor must clearly document the interface between the
formal display description and the target-specific code so that the programmer
E can work at all levels of complexity from the pixel level up to the module
level. These interfaces are also needed when the programmer defines entities

g: for use by the system. Finally, examples of data-gathering routines need to
;5 be provided to further assist the maintenance programmer.

5 . 3.3 Process Implementation

&: This section describes how each of the processes involved 1in producing
" the above data (the editor, animator, and code generator), may be broken into

subprocesses to make use of nondevelopmental software. Software i1s available
which fills part of the need but not all, and the following sections identify

- 48 -

1 o

s AI‘A'.,, l';i,l,l]! VY ‘nif ¢ A‘».ﬂ‘g.‘\y"“z & ’."‘\,‘\.‘f‘i" ¥ ! 5‘1‘ . :')...'4 A

O o O . 0 v 4
1!-' * ‘:'."\:9 0 }‘:“)l‘ 5...2.““ ?'O.?’l.: b‘!‘o [

which parts can be filled with existing software and which cannot. A more
detailed partitioning is shown by a figure for each process to show the use of
nondevelopmental software. These figures use the same symbology as that in
Figure 2-2.

3.3.1 Editor Implementation

The editor subsystem may be divided into three distinot pieces: a
graphics editor, a dynamics editor, and a translator. This is shown in Figure
3-~1. The graphics editor handles the definition of the shape of objects with
their attributes while the dynamics editor handles the specification of
attributes and dynamic controls at the segment level. This division allows
the use of commercially available graphics editors. Furthermore, the output
of the editor subsystem would not go directly to the formal display
description, but instead goes to its own data base. This allows the editor to
use a more efficient data-base format than that in the formal display
description, and it also allows the use of nondevelopmental graphics editors.
While this data base is formal, it is not readable by a programmer. Thus, a
translator is needed to produce the formal display description.

. Diselay
Input Graphics Description
Devices Editor Translator
Display
Description
Data Base
G . y
Tgr?npur:\'gls Dynamics Formal
Editor X Dic:_;p"l‘:g
Descrietion
Library

Figure 3-1 The Editor Subsystem Partitioning

3.3.1.1 The Graphics Editor

The graphics editor handles defining the shapes of objects and their
attributes. Several types of editors which manipulate graphic images exist.
These include programs which allow the user to "paint™ on the screen and
computer-aided design programs. None ot these allow specification of dynamic

- 49 -

TE-

N R T T T R T T W Y T T W I TW T T T N T I T YT YT WIT W TTE T T T R T P TTW TR T TW T TV TR W T T T T YR VA TV T TS TR Y TR Y Y WY T e T

information to the full extent needed by the designer, hence a separate
dynamics editor is needed to provide such capabilities.

Graphic painting programs are widely available for personal computers.
These allow the user to M"paint" an image on the screen by changing the colors
of the individual pixels in a manner which imitates the artist's paintbrush on
canvas. What these programs gain in simplicity is lost in power. These
programs work at the pixel level and not at the entity level. The initial
drawing of images is very eas., however, moving an entity on the screen can
involve writing over the old with the color of the background and then
redrawing the new in the correct position. These programs store the drawings
as a copy of the bit map of the screen, where a bit map stores the color of
each pixel and nothing more. This storage technique leads to simplicity
because each command only effects the colors of individual pixels. More
complicated techniques store more abstract information and require more
bookkeeping to be done in each change to the drawing. Bit-mapped storage
methods lead to difficulties in transmitting the display design to the
programmer at many levels.

The major difficulty is in determining what entities make up a display
design from only the knowledge of colored pixels. It is very difficult to
determine from a picture of two connected squares if the image is actually one
of a cube. Line drawing analysis for image recognition is an important issue
in the field of artificial intelligence, and the associated problems are only
partially solved. Other disadvantages include the fact that fine adjustments
are very tedious and difficult, and that personal computers rarely support
very high resolution or large numbers of colors because they are designed to
be affordable for individuals, not to represent the state of the art in
technology.

The second possibility for a graphics editor is to use a computer-aided
design (CAD) package. In the engineering field, these packages are used to
design and model everything from electronic circuits to car bodies. While
many CAD packages also do extensive analysis of the models, this system will
only utilize the ability to create and modify graphics. The fundamental
characteristic of any CAD package is that it is a powerful graphics editor.
The implementors of CAD packages have already solved the problem of drawing
and redrawing pictures quickly and easily.

CAD packages deal with entities at the entity level. An entity is
manipulated as an entity as 1long as it exists, not just until its initial
position and size has been chosen. Storage of symbolic, abstract information
is the major advantage of CAD packages. Internally, a circle is represented
by some tag which denotes the entity combined with its center and radius.
This is very close to the ad hoc description of the formal display description
as described in Section 3.2.2. Thus, when the designer wishes to move the
circle, he may pick up the circle and drag it across the screen to its new
position, without manually erasing the old image. CAD systems extend such
operations from the level of the entity to the level of a group of entities so
that moving a representation of a vehicle, for instance, does not mean whiting
out the old image line by line, curve by curve, just to redraw it somewhere
else., Since this knowledge of entities and groups of entities 1s stored in
the data base, recognition of these in the display design is very simple. The
one disadvantage of the CAD packages is that they are expensive because of the
amount of effort needed to develop a graphics editor at the entity level.

- 50 -

Bt *‘*‘*‘-*‘d
GORRE SRR ot

[T IRTERYDrT OTrORTOr TR o Y L RIORT I T vvr*"vvvvvw

:3 Given the advantages of wusing a CAD package, the painting programs ﬁ
33 available on personal computers are not adequate. Use of a commercially |
Q; available CAD package will drastically reduce development costs by allowing !
N its designers to solve the difficulties of letting the user easily draw

graphic images.

}. The CAD package chosen must have several important characteristics.
First, its internal data base must be accessible. This means that the formats
of any files must be readily available to the implementors of the system.

3

} Second, it must meet the above requirements for ease of use or allow
" improvements to the user interface. Third, it must support the display design
¥ requirements as specified in Section 2. Fourth, it must allow the system
:u implementor to make minor modifications and extensions which enable the
% ’ package to be incorporated in the system. Extensions need to be added to
R provide for user-defined entities, to limit the available colors, to specify
ﬁ‘ the target display size, and to allow the editing of dynamic controls. These

extensions are described more fully in the following paragraphs.

A Some user-defined entities need to be specified by software because of
;: their complexity. For example, a three-dimensional map of the terrain might
33 be defined by a complex data base. This data base then needs to be
;? transformed in an efficient manner into the images placed on the screen. Some
N way to interface these user-defined entities with the CAD package needs to be
" developed.
ay
; Limiting available colors and specification of target display size allows
.2 the user to impose constraints on the display designs so that they are optimal
:b for a particular target. Such constraints need to be removable because of the

! necessity for flexibility in the display designs. The user must be able to
N state on which target the display design is to be implemented by giving the
M- name of the particular target device. The CAD package needs to be extended so
;ﬁ that those constraints are enforced in display designs.
L At least three ways need to be provided to specify the chromaticity
‘ aspect of color. One 1is by entering a name. The list of possible colors
;ﬁ includes white, black, red, blue, green, and others added by the designer as
) needed. This will make it simple to enter commonly used colors. Another
Ky technique is to pictorially select a color from such a chart so that the full
: spectrum may be used. A third is to enter indices into a pre-defined scale or
)y chart, such as the 1931 CIE (Commission International de 1l'Eclairage, or

International Commission on Illumination) (x,y) Chromaticity Diagram.
Likewise, gray level needs to be specified either by name--such as bright,
| normal, or dim--or by an index into a scale.

Finally, specification of the dynamics will require a custom editor.
5 Several CAD packages provide for small, repetitive movements in images, but
these movements are not general enough for this application and the
specification is too difficult for all but the more advanced users. Hence a
separate dynamics editor is needed and the CAD package must be extended to
allow smooth transitions from one part of the editor subsystem to another so

-
P I

-+
k that user is not aware of these transitions.
Rt

2 - 51 -
g

»

L

. IR AN ' 7o X) A - L AN AL A T A T A A AT A
S "'."' (308 iy Ut ’l:t"’.‘ %‘A.‘l.‘\".“.o ..'I ANR I’L‘I’n‘l’» WY AN t‘n‘.‘a W ,’n‘.'l i"v t'i'!‘ll v HY .w rA JUOU SR AN Y X TR R .

b T EET T R wr ey @ WO MW T T TER I T TRIOR TN I TRT aw TRE TTTTR ”z -"I"I"i-"‘ﬂ“'"‘T

& 3.3.1.2 The Dynamics Editor

"

'$ The dynamics editor supports the specification of changes in attributes
ﬁ and positions of the segments in the display design. There are several ways
- in which this can be specified. One is to have the designer create Ada source
< code. Another is to trace the movements made by the designer and then
4 interpret these movements into commands. A third is to use special icons to
1& specify the paths for various parts of the segment. The last is to have the
Q designer create controls using a specially developed language.

One possible way to specify the dynamics of a display i1s to have the user
write Ada source code which invokes the appropriate commands in the
appropriate sequence. Thus he might write a section of code which says "move
the segment to the right three inches and then draw the 'ship module'™. While
allowing full control of the display, this increases the time novices must
spend before being able to design even the simplest displays. Learning to
specify motion might take weeks or months instead of minutes. While this

y technique allows entities and segments to be incorporated into display designs

W easily, it is no different than the current method of creating displays 1in
3 that there 1s no intermediate step providing communication between the
N designer and the programmer.

Having the system track the designer's movements is at the opposite end
of the spectrum. Using this technique, the designer specifies that a needle
(and the segment in which it is drawn) is to rotate by moving the cursor in a
circular motion. While simple, this method has several disadvantages. One is
that it would be difficult to control the motion precisely. Another is that
2 making minor modifications to the motion would be very difficult--the user

would need to re-enter the entire movement to make any changes.

Q' This latter technique can be improved by using the graphics editor to
@‘ specify the motion path with special icons. A set of points on the segment,
w one for each dimension, are chosen as key points. For each point, a path is
J‘ drawn from a starting position to an ending position. An expression is

specified (such as [(TEMPERATURE - U4) ® 5]) which governs the motion.
Finally, values are given which correspond to the starting and ending points

A of the path.

s

t

¥,

K The advantage of this technique is in its simplicity and preciseness.
o The disadvantage is that it does not allow full control of the sequence of

transformations. It is very difficult to specify that a motion is to take
place only if certain conditions are met. Furthermore, it may be necessary to
limit the types of motion which may be specified to reduce the complexity of
translating the paths into the formal description. Also, such a technique
only applies to motion, not to chromaticity or other attribute changes.

The final method allows the user to specify all dynamics in a modifiable J
n form without resorting to writing Ada programs. This is to write code in a
o special graphics control language using a custom, wmenu-driven editor. This
g technique 1is preferable to writing in Ada because the special language can be
¢ tailored to the needs of the system. Ada may be intimidating to the novice,

K but a graphics control language can closely parallel English so that it is
more understandable. Also, Ada is not necessarily optimal for wuse by menu-
W driven editors because it was designed for general programming, whereas a

it "52-

e .

339,00

IR AP R LTI L W
S YERL VRN, It nt ‘1 aOAAS g‘t'a *. . ‘\.'ogqu o U 'l\.‘ 0

special language can be made to be optimal through the use of instruction
formats which lend themselves to generation by templates.

The graphics control language will provide full control of display
dynamics. It needs to incorporate the major control constructs of any
programming language: sequential grouping of actions, conditional control of
actions, and conditional 1looping. It also needs to incorporate the other
major features such as variable manipulation and function invocation.
Finally, it needs to support description of all of the dynamics which are
supported by the system.

The best choice is to provide both of the above two concepts so that all
capabilities are available. As the designer specifies a motion path for a
segment, the corresponding graphics control constructs are generated
automatically by the system. Then he uses the menu-~driven editor to modify
and embellish the dynamics, giving him full control. Hence both simplicity
and full control is provided.

It is important that the formal display description be error free. By
this we mean that nothing in the description should violate the rules that
make it formal. For example, if two points are needed to specify a line,
supplying only one point produces an error. This consideration is esapecially
important when using an editor to create dynamic descriptions with a graphics
control language. The editor must diagnose and help fix any mistakes of the
sort described above.

3.3.1.3 The Translator

The output of the graphics and dynamics editors goes to a data base which
is in a format recognized only by the two editors. This format will be
dictated by the choice of a particular CAD package. While this editor data
base will be formal, it will not be readable by a programmer. A translator
will thus be necessary to create the formal display description.

This translator will be a further software addition to the editor
subsystem. Its existence needs to be totally transparent to the user, and it
will run concurrently with the graphic and dynamic editors, translating data
as they become available. This minimizes the delay between finishing an
editing session and animating the display design. Ideally, the user will be
able to switch instantaneously from the editor subsystem to the animator
subsystem so0 that he can create an idea and immediately try it out. Though we
recognize that this may not be feasible given today's technology, effort must
be made to reduce any delays.

3.3.2 Animator Implementation

The animator subaystem must transform the formal display description into
moving images on the graphics terminmal. To accomplish this, the animator
subsystem may be alivided intc two distinct pileces: a compiler and a
processor. This is shown in Figure 3-2. The animation compiler translates

- 53 -

-

the formal display description in whatever way is necessary into some format
which will allow the processor to draw the images on the graphics terminal at
optimum speed. The processor does the actual animation, combining the stored
test data with those generated by the variable input devices as directed by
the designer. The output of the animation processor goes to the same graphics
terminal as used by the editor subsystem so that the designer does not have to
switch from station to station. Likewise, the input devices wused by the
animator are the same as those used by the editor.

¥ Formal Display Input Graphics)
N Description Devices Terninal

Animation

. Animation
Compiler

Processor

Data Data

§ Animation Test
L)
%@

Figure 3-2 The Animator Subsystem Partitioning

3.3.2.1 The Animation Compiler

If Ada is used for the formal description of the display design, the bulk
of this subprocess will be performed by an Ada compiler. The output of this
animation compiler, i.e. the animation data, is a computer program which,
when executed, will draw the images on the graphics terminal.

N This compiler will be integrated with the translator in the editor
subsystem so that as each module is defined, that module becomes available to
. the compiler. Thus the user will never need to wait for more than one module
" to be compiled before starting the evaluation of the display design.

3.3.2.2 The Animation Processor

*y This portion of the animator subsystem actually animates the display
% design. It is simplified by the use of Ada since it consists of the animation

data, the test-data-gathering routines, and the input device handlers. After
w combining the above, the resulting program is executed. During execution,

) - 54 -

W VA% \ BI% CUSUN L U PO IS BN), N
AT AR LT R RIUCU Nt

"8 PR L hihs A0)
i .bl_i" "‘l.}') AROENON

handbad 4 - ey T T T YOO O O T T T O TTRCT U T W Y.y

:3 test-data-gathering routines collect all of the data for each individual frame
:HQ and provide it to the rest of the program. This closely parallels the method
ﬁ& of drawing the images in the target display device.

. The input device handlers allow the user to control the data gathering,

specifying that the gatherer do such things as throw away a certain amount of
the data (skip ahead) or that it reads the value of a particular input-data
parameter with a variable input device instead of from the test-data file. By
controlling the test data, the user may easily control the animation process.

- Due to the limitations of hardware capabilities, it may be difficult to
allow full control of certain forms of test data. Reversing the order of

%5‘ reading the test data or skipping backward through the data improves the
S evaluation phase by allowing the designer to quickly repeat a certain sequence
) & of events. However, some forms of test-data storage do not allow such
::.: j controls, For example, 1t is usually impossible to read a magnetic tape in
-V reverse. Where attempting to implement such capabilities for a particular
e test-data source will seriously impact the time spent developing the remainder
‘ﬁ:' of the system, the capability should be left out if it will not seriously
g;Q impact the evaluation process.

,‘n
:f: The methods used in generating data need to be very well documented so
i that a maintenance programmer may implement new techniques as needed.
f$$ An important point to remember in the design of this system is that it
ﬁ}; must be of general usefulness, not designed around any particular set of
?;Cj displays. This generality means that the graphics terminal's hardware must be
."4 very powerful to overcome the limitations of the software. Because of this

’ generality, the Ada source code created by the translation from the editor's
it internal data base to the formal display description will not be able to take
,;? extensive advantage of special graphics tricks. The speed of the animator
qﬁ must come from a combination of a generally good translation and from very
; :_' high performance hardware within the graphics terminal.
i)l'
,Sj; 3.3.3 Code Generator Implementation
o)
}}C Finally, the code generator subsystem may be partitioned into a target-
“J: specific compiler and linker as shown in Figure 3-3. The compiler translates
I the formal display description into the instruction set of the target device.
. The display description code is then merged in the linker with the target-
%:ﬁ specific code, which contains calls to high-level graphics and mathematics
I routines on the target device if they exist, to produce the executable display
E ’ description. The target device is specified by name, and this name is used by
hv' both processes seen in Figure 3-3 to generate the code for the correct target.
3 r‘
o,
ij 3.3.3.1 The Target-Specific Compiler

2
::f Again, the code generator subsystem will be simplified by the use of Ada
I in the formal display description. An Ada cross compiler may be used to
-;r create the display description code, where a cross compiler is a compiler
]
W - 55 =
:f:ft
iy
A

hoet
Lolel

I
OBSAL L S A ORI l‘.l. . 1.1';' ISR eo'.‘ai.,a .,c‘., IAOAS !. o’.‘u\, '., ._ \-

v - - e e TR TETT TS TOT RO RO WO R ST TN TETNERTTNENS W

Formal Display

Description Target Specific Code

Programmenr

Display
Description
Code

Target
Seeafic | Seeatie
Compiler Linker Executable
Display
Description

Figure 3-3 The Code Generator Subsystem Partitioning

which runs on one computer but generates machine code for another. Since the
Department of Defense has mandated the use of Ada, Ada cross compilers should
exist for any microprocessors used within the target display devices. A
different Ada compiler will be used for each different type of target, and
support software will execute the correct compiler based upon the name of the
target device.

3.3.3.2 The Target-Specific Linker

Once compiled, the display description code will be linked (i.e., merged)
with the target-specific code. This process is dependent upon the form of the
output of the target-specific compiler, so a different one will be needed for
each different ocompiler. Normally such a linker is available for each
commercial compiler. Support software will control which lipker is used in a
X particular case. In some instances, but not always, the link step will be
h, performed by the software package that does the compilation.

3.4 Hardware Implementation ‘

)¢ This section describes possible implementations for the input and output
devices and the system computer. This section is purposefully last because of
the need to have hardware choices driven by the data and process
o implementations.

QWI 3.4.1 Input Device Implementation

R As mentioned in Section 2.5.1, the input devices must have two important

s characteristics: ease of use and familiarity to users. Another requirement

is that those which will be used in the editor interface smoothly with the

. commercial computer-aided design (CAD) package. In this section, the devices
L which fill the needs most closely are presented.

o b Three types of inputs are needed for this system. One is for text and
numeric data, the second 1s for positional data, and the third is for test
data created by variable input devices during animation. For the text, the
"y keyboard and speech recognition systems will be considered below. For the
v positional information, the mouse, graphics tablet and pen, graphics tablet
iy and puck, light pen, joystick, thumb wheels, and the possibility of developing
W other devices will be considered. For the test data, different forms of
A potentiometers will be considered as well as the possibility of using the
positioning devices.

’": Keyboards are the most widely used devices for inputting characters. Due
ﬂ?; to a long history of use in typewriters, keyboards are very familiar to most
ke potential users. Voice input systems represent a strong alternative. They

ol have the advantage of more rapid transfer of information to the system. The
disadvantage is that they are still under research and practical

W speech-recognition systems are several years off. Hence the keyboard is the
ty¥ed most likely device for the short term. However, the system should be
Ag;& implemented so that once the voice 4input becomes available, it may be
éh, integrated with a minimum amount of redesign.
B

As mentioned above, there are many ways to input positional information.
h The mouse 1is a small box which tracks its own motion through a ball or
by reflected light to move the cursor on the screen. If the mouse is moved

without touching the desk top, the cursor does not move. The graphics tablet
reads the position of a pen or puck to place the cursor. When the pen or puck
is 1lifted, the cursor jumps to wherever it is put down again. The difference
between the pen and puck is that the former looks like an ink pen while the
latter is more similar to a mouse. The light pen has a light beam which is
‘ot pointed directly at the screen of the graphics terminal so that no cursor is
needed, The Joystick controls the cursor by "steering™ it about the screen,
O moving the cursor whatever direction the stick points. Thumb wheels have a
: separate wheel for vertical and horizontal cross-hair lines, and a thumb and
finger are used to move each line.

¢

:ﬁél The advantages for the various devices are as follows. The light pen is
“v{ . useful for pointing directly at an object on the screen. The mouse is the
.éﬁ most familiar device because of its prevalent use with personal computers.
N The graphics tablet and thumb wheels allow for precise placement. Thumb
N - wheels are particularly easy to switch to when entering a large amount of
ﬁ? text, since they are often attached directly to the keyboard.
)
{%é The disadvantages of each are as follows. Those with separate pens such
Q}% as the light pen and graphics tablet with pen make it difficult to switch from
iy the keyboard to pen and back. Graphics tablets take up a large amount of desk

space. The light pen is tiring to hold for long periods because of its weight

yﬁv and the awkward position in which it must be held. The mouse can be difficult
l“:

o

- - 57 -

i

- . iy ;)
SOCOOOOBEOOGEAON0 CE0E : / TR ANRY 1) -
R G I D e I R D € R e e R A N O

-: to use when moving long distances across the screen because of limited desk
29 space. The light pen and mouse are difficult to use when attempting fine
*i control. The joystick can be slow because the cross hairs are "steered"
' instead of moved directly.

Since each of the above devices has its advantages and disadvantages,
provision needs to be made for as many as possible. In particular, the mouse,
: graphics tablet and puck, and thumb wheels provide good control without too
: much frustration. Many CAD packages allow the user to make the decision, and
A the rest of the system should also allow such choices.

Alternatively, new devices might be developed. One example is a ball

‘A held in the air which operates as follows. Moving the ball up and down moves
,ﬁ the image up and down on the screen, side-to-side motion moves the image side
K] to side on the screen, back-and-forth motion zooms the image in and out, and

i twisting and rotating the ball twists and rotates 3-D images on the screen.
This ball will be very good at positioning the image for viewing from all

o directions, but would be poor at specifying accurate points.
N
\
:23 Another useful input device might be a digitizer which wuses lasers to
K, read the three-dimensional coordinates of an object. Such a box will make it
‘ﬁ simple to input accurate models of airplanes, vehicles, and the like. The
fi system should be open ended enough that it allows such devices to be included
g at a later date.
N
:i} As mentioned above, the various forms of potentiometers could be used to
o input test data during the animation phase. More than one vendor has a box
] which has several knobs to control several potentiometers. Each potentiometer
could be treated as a separate source of test data to allow simultaneous
=iy control of several parameters in the display design. Some of these devices
' have small, six to eight character displays, which could be used to note which
e knob is tied to which parameter or to display the value itself. Since these
,% devices wusually interface only to the graphics terminal made by the same
:3 manufacturer and since their capabilities are not as significant as other
P! considerations, undue emphasis should not be placed upon selection of a
e, variable input device.
;YQ The positional input devices such as a mouse or light pen could be used
’“ﬂ to provide the functionality of the above potentiometer box. Techniques could
1& be developed to allow a mouse to control several parameters. An up and down
- motion could change one parameter while a sideways motion would change
o another. Using such devices as the graphics tablet or 1light pen would
N minimize the amount of equipment at the designer's workstation at the expense
) of being able to control only a few parameters.
o
N

3.4.2 Output Device Implementation

In this section, we present possible devices which output human-viewable
pleces of the display design.

- 58 -

« ‘q-."..'

e
A ORI NN rs, |

Rl b WYV IEFTETTIRYT W WP YT YT Y T W e vy wewy wee v

3.4.2.1 Hard-copy Output Device Implementation

Severzl devices are available which output to transportable media. These
N2\ include printers, video cassette recorders, and photocopiers.

Literally hundreds of printers are available with many different

N capabilities at many different prices. Characteristics which influence the
-" choice of a printer include colors available, precision, speed, clarity, price
Y3 and size of paper used. Very few printers provide as wide a palette as many
;:I: of the commercially available graphics terminals and this could pose a problem
T . in some situations. Many printers draw with such precision that full size
printouts of cars are accurate to within fractions of a millimeter. |Less
e accurate precision is needed by this system since the printouts will be used
Ny - for general information transfer, not details. Likewise, the printouts do not
' need to be large as little need exists for wall-sized printouts of 12-inch
::.: square display designs.
Another technique for storage and transmission of display designs would
,!»’;; be to use a video cassette recorder (VCR) to tape the images on the screen of
.ﬁ the graphics terminal during the animation process. This normally works by
3} attaching the VCR to special output leads from the terminal. This is useful
oy when those who must evaluate a display design cannot come to the facility in
:f'-' which the graphics terminal is located. Due to the bandwidth of the tape, the

taped images may not provide as high a resolution as the original. This
. technique provides the best way to store and transmit accurate representations

o of the display design concept.

.

:u Finally, some manufacturers produce devices that make a direct photocopy
) of the images on a graphics terminal without the use of a camera. These are
. preferable to paper printouts when very accurate renditions of the display are
:' Y needed to show the effect of pixel resolution on the display.

:3,' Of the above three, provision for paper printouts is the most important.

. It 41is not necessary that the implemented system interface to either of the
otk other two devices. If a video cassette recording is absolutely necessary at a
’ particular facility, one can use a video camera to record the images directly
‘.:; off the screen. Likewlse, the photographs can be created with the wuse of a

o good quality photographic camera.

:::: The staff at each site in which the system i3 installed will need to

e determine which hard-copy outputs are needed for their application. The
" systen implementor should provide a listing of the suitable printers and other

::$ hard-copy devices along with their capabilities and prices.

z:.'|

0..!

o

§

3.4.2.2 Graphics Terminal Implementation

: There are two primary requirements for the graphics terminal: it must
N ",?' interface with the chosen computer-aided design package and it must be able to

‘. draw graphic images on the screen as quickly as the current target display
.:' devices. The following features are necessary on the graphics terminal in
tet order to meet current capabilities and needs:

,ﬁ

I

-5 -

7

.I'. -, I - ¥ T - 2 5%] . “u w, “n AN A N LN e
TR OAOBLOC BT § D N ONR , d Y o ‘;ﬂ
ROROLAOSOOCI0 N AR R T At e R TR L R R N LN e

! o 1024 by 1024 pixel resolution, and
o 256 colors (including at least 32 different chromaticity values at
8 gray levels).

o The capabilities of the graphics terminal need to match as closely as possible,
" if not exceed, those of the currently available target display devices in
' screen update rate, and the ability to display images which meet the
W requirements. It should also provide a pixel resolution which is as fine or
finer than the target devices. 1

) As mentioned above, some graphics terminals implement various functions in
hardware, and those terminals are recommended. In Appendix C we list and 1
compare the capabilities of several terminals which provide such hardware.

3.4.3 Host Computer Implementation

§ As a final consideration, the host computer for the system must also have
g certain features. Given the large amounts of memory which will be needed to
Y quickly update complex displays, at least a 32 bit machine supporting virtual
memory will be required for the host computer. Virtual memory allows a program
to be larger than the actual size of the memory, allocating sections of disk
) storage when the program is larger than physical memory. Many of the current
host computers provide over eight million bytes of memory, but it cannot be
guaranteed that this will be enough in every case. Since the amount of storage
available on a disk is typically several orders of magnitude greater than
physical memory, virtual memory goes a long way toward postponing problems of
running out of wmemory. Thirty-two bit architecture is needed for the same
reason: to provide rapid access to large amounts of data storage. In general,
the host computer must provide as much memory as possible and execute programs
fast.

e a4 o &

Another requirement of the host computer is that it interface to the
chosen graphics terminal and the chosen computer-aided design package.
e Furthermore, if Ada 18 chosen for the formal display description, an Ada
compiler must be available for the host. Developing a custom Ada compiler will
2 increase the price of the implemented system beyond reason.

Finally, it must be possible to interface the host computer to the needed
output devices and to other computers. These interfaces must be fast,
% especially those to other computers, if those computers are to generate test
data during the animation phase.

{ Pogsible criteria for the choice of a host computer include items other

than the above necessities. Tape drives will be useful for making archival
o copies of formal display designs, targec-specific code, etc. This will allow
N simple re-entry of the information in the case of the loss of data as when a
) disk becomes corrupt. Also, the ease of use of the operating system provided
. with the host must be considered.

- 60 -

N N W

-

N

o SOBERL v O O o P ot e O L O Ll g L o TR e Tt AL Q0 LYY 4 .
R A0 v e € ity 60 SR LN R T 04) ¢ T Ol

R 3.5 A Brief Description of System Implementation

k)

:3\ This section summarizes the possibilities for system implementation
described in the preceding four sections. Two very important decisions drive

J“ the final system. One is the decision to use a commercial computer aided

:ﬂg design (CAD) package to do the editing of the object shapes. The other is the

‘dz: decision to use Ada in the formal display description.

' Since the editing of object shapes 1s provided by the CAD package, another
editor must be developed to support the dynamic aspect of display designs.

q& This editor should allow both graphical and textual specification of the

f dynamics. Also, since the CAD package supports its own data base, a translator

% is needed to produce the formal display description.

Y,

A» Once the formal description is created, a commercially available Ada
compiler for the system computer will be used in the animator subsystem to

KR provide motion to the display design. This compiler will generate the

e system-specific code which updates the screen of the graphics terminal at rates

1 exceeding 25 frames per second unless the designer has slowed down the anima-

:) tion process. With the use of Ada, the only development {nvolved {n

o&ﬁ. implementing the animator subsystem is in writing test-data-gathering

a’ subprograms and possibly developing software which performs minor modifications

2 to the formal description to optimize it for the graphics terminal and host
R computer. In order to achieve 25 Hertz frame-update rates, the use of a

:: powerful graphics terminal which provides transformations, clipping, and other
X’ algorithms in the hardware is needed.

Finally, after the display design is seen to be optimal on the graphics

‘}‘ terminal, the code-generator subsystem automatically creates the program which
:- will be downloaded into the target display device. The bulk of the processing
o™ is done by target-specific Ada compilers and linkers. Hence the development for
l.

this subsystem is limited to building an environment for the compilers and the
i programmer-written target-specific code. This subsystem uses the Ada packaging

J concept as & virtual interface between the generality of the formal display
i description and the particular features of the target device. The maintenance
4}\' programmer will write data gathering routines for the particular application.
R He will also write and maintain the routines which draw entities on the screen
A~ of each target device at a particular facility.

"t
-

e
e
e
S
1
-f':'

.

‘e
'_\

o
LY
e el
1:'.¢

.v:"

,{g‘

K
P “ar o v o PN . o

by

" 7y . < 54) V'\.’ N7 M \(\..\f\'.'.('- R R A R N T R i N P N T oy
.'I"’"! o "'",‘u.?‘x .f'..l‘-.ﬂ': AN L L2 ¢ J?) .- A" A .v .= ninta’ o Loyl P " " 2o lalpd £ oW v

e

e

[\

a s a"al

<P IR SLRINIY

4 Conclusions and Recommendations

In this report, the system requirements and top-level design have been
specified for a system to support the design and automated programming of
electronic displays. The requirements were determined for an ideal system not
limited by current technology.

To support the creation of display designs, a hierarchy of levels was
created with special capabilities and attributes attached to each level. The
created display designs are expressed concretely in the formal display
description. The formal description, when combined with test data, allows the
designer to evaluate the display design. Once the display design is optimal,
the automatically generated executable display deacription may be loaded into
the target device for use {n simulators, aircraft cockpits, command and
control centers, or anywhere large volumes of data must be presented
graphically at high speeds.

The system was partitioned to support the creation, test, and compilation
of the display designs. This division of the systeam into an editor, anisator,
and code generator allows the use of commercially available hardware and
software. Once the requirements for the editor were defined, it was seen that
many of the problems associated with creating and modifying graphic images are
solved in computer-aided design packages. This saves the development of tens
of thousands of lines of computer software.

Similarly, once the requirements for the animator and code generator were
specified, it was seen that the use of Ada to formally describe the display
design meant that these processes could sake use of Ada compilers, This again
saves the development of large amounts of software.

In Section 3, 1t was noted that current technological limitations
preclude the full implementation of all attributes and controls. However, the
ma ‘ority of them, including those which are the =sost important, can be
{ "lled at the present time. The modularity of the system desaign wi]!

‘able additional capabilities to be added with minimal 1impact upon the
initial design.

The system may be feasibly built at the present time for a reasonable
cost by making extensive use of nondevelopmental! hardware and software. The
benefits to be gained by using this systes are grest, and it is recommsen<s’
that a Phase II effort be funded to specify the detail ed hardware and softw . -
requirements, create the complete systea design, and implement the saystes :
soon as possible.

- b -

-

Pt

APPENDIX A

GLOSSARY OF TECHNICAL TERMS

The terms in this glossary are defined as they are used in this report,
and do not neceasarily agree with their use outaide of this context.

aniaator: The portion of the system that allows the deaigner to evaluate the
display deaign by seeing it change on the screen in real time, sisulating
its appearance in the target environsent.

ALtributs: An item of information which is associated with a graphical image
and is distinct from the shape of the object. Examples of attributes
include line texture and color.

hit mAD: A matrix containing the same number of elements as there are pixels
on the display screen. Each element in the matrix is asaigned a color,
and the value of each element in the matrix can then be mapped to its
corresponding pixel on the display screen.

computer-alded daaign (CAD) packags: A software package that permits its user
to create and modify graphic representations of two- and

three-dimensional objects.

abhildren: When used in the ocontext of a hierarchical structure, such as
segaents nested within other segments, the "children” are those objects
which are lower in the hierarchy than the object of reference. An
example i3 the relationship between two pecple as seen on a family tree.

chromaticlily: The portion of color not associated with gray level.
Chrosaticity is further broken down into hue and saturation.

alipping boundary: A closed two- or three-dimensional shape that encompasses
an ares Oor volume outside of which the entity or segment to which it
applies will be clipped, i.e., not drawn.

opds: When used as a noun, it refers L0 & computer program (either a husan-
or machine-readable program;; when used as a verb, 1t refers to writing a
-omputer progrem.

oods ganeratar: The portion of the systes that transforms the formal display
deacription into the executable display description.

- 61 -

color: The attribute of visual experience that can be described as having
quantitatively specifiable dimensions of chromaticity and gray level. It
does not include the portions of the visual experience dealing with
extent (size, shape, etc.) or duration (movement, flicker, etc.).

coordipate system: A set of three orthonormal vectors defining a set of axes
labelled x, y, and 2z which allow the unambiguous determination of the
position of points in space. A local coordinate system for a segment 1is
specified by placement of origin, orientation of axes, and the
measurement system in use.

data base: A data file containing a usually large number of data records
which are connected and can be cross referenced by various fields within
the records.

designer: The person who creates the concept of a display and transforms it
into a display design.

diffuseness: The attribute that specifies to what extent light from a 1light
source will be specularly or diffusely reflected from a surface., It
essentially defines the 'texture' of a surface, i.e., how smooth or rough
it appears.

display: The time-varying visual mapping of the state of the environment onto
the target device screen. The display is a sequence of static frames
drawn by the target device based on input data values, and the impression
of motion 1is created by the frames being displayed at a sufficiently
great update rate.

diaplay deaign: The abstract concept or idea describing how the visual
mapping of the state of the environment will occur based on the values of

and changes in the input data.

dynamic controls: The commands attached to a segment which control where on
the screen a segment will be displayed as well as whether the segment
will be displayed. These commands may also specify the format of
displayed numeric and textual data. Examples include rotation about and

translation along an axis.

aditing: The process of creating and modifying data; in the context of this
report, the display design.

aditar: The portion of the system which transforms the commands representing
the display designer's idea of the display into the display design.

antity: The smalleat graphic object manipulated by the graphics editor.
Examples include lines, circles, and cubes.

axecutahle diaplay dascription: The concrete representation of the display
description as an executable computer program. It is also referred to as

the executable description.

- 64 -

o

O IAAY O / " Xy)
R A N T s Va B PR e .'»‘.'f'!lo R SASESEA U

! .Q‘“ ..E *

font style: The attribute which specifies the particular set of shapes to be
used in displaying text and numerals. Examples of font styles include
italics, gothic, etc.

formal display description: The concrete representation of the display
description expressed in a high-level programming language. It is also
referred to as the formal description.

frame: The static assemblage of images filling the screen at any one instant
in time which represents the state of the environment based on the
current input data values. The rapidly changing sequence of frames make
up the display.

graphics terminal: The output device in the system which allows the designer
to visually monitor the display design during the creation phase and to
evaluate the display during the test phase.

&Kray level: The portion of color not associated with chromaticity. The gray
level 1is the measure of the brightness or lightness of an object or a
pixel.

hue: The portion of chromaticity that can be described by such words as
'red', 'green', or 'blue'. It specifies the wavelength(s) of light being
emitted or reflected from a surface.

icon: A collection of entities stored in the editor library and manipulated
as a unit,

image: The static visual representation of an object or group of objects
displayed on the display screen.

dnput data: In the context of the target environment, the data passed to the
target display device by external equipment such as sensors, other
computers, etc. which are used to determine the appearance of the
display.

doput devices: A device used by the designer to give commands to the system.
Examples include a keyboard and a mouse.

dpstruction set: The total set of microprocessor-specific commands that are
available for use in a machine-language program written for a particular
computer.

dibrary: The data base used by the editor to store previously-defined
portions of displays for later retrieval and reuse in other displays.

module: A collection of one or more segments which have been named and which
specify the inputs to the display from the environment.

module invocation: The act of including a module within a segnent by
referencing it by name.

- 65 -

povice: A designer or other user of the system who is unfamiliar with the use
of the system or computers in general.

Dackage: A collection of subroutines that perform logically-related tasks,
Packages are usually associlated with the programming language Ada.

parent: When used in the context of a hierarchical structure, such as
segments nested within other segments, the "parent" is that object which
is higher in the hierarchy than the objects of reference. An example 1is
the relationship between two people as seen on a family tree.

pixel: A contraction of ‘picture element'. The pixel is the fundamental
entity i1in graphics. It 1is the smallest resolvable area of a display
screen, in which an average color value is determined and used to
represent that portion of the scene being displayed. Pixels are arranged
in a rectangular array to form the entire display screen.

priority: The attribute which specifies the importance attached to displaying
a particular segment in the event that it and one or more other segments
are to be displayed in the same or overlapping regions. The segment with
the higher priority will be displayed over the other segment(s).

proceas: Something which transforms data into other data according to a
specific set of rules. In the context of the system described by this
report, the major processes are the editor, the animator, and the code
generator.

programmer: In the context of the current method of creating displays, a
person knowledgeable in the programming of microprocessors who takes a
display designer's drawing and writes a computer program to implement it
as a display. In the context of the system described in this report,
either a person who manually converts the formal display description into
the executable display description or a person who writes the general
data-gathering and entity-drawing subprograms for a particular target
display device.

real time: The ability to respond to changes in the environment within a
suitably small period of time after the change.

resolution: The extent to which a display screen ocan accurately display an
arbitrarily complex or small object, which is usually a function of the
number and size of the pixels that make up the display screen.

aaturation: The portion of chromaticity that specifies the proportion of pure
chromatic (as opposed to achromatic -- white, gray, black) light in the
total light emitted or reflected from a surface.

Acreen: The physical device to which the display 1is mapped. Examples of
screens include cathode ray tubes, liquid crystal displays, etc.

asgment: An element of the display design hierarchy. It is oomposed of
entities, icons, subsegments, invocations of modules, attributes, and
dynamic controls.

- 66 =

asrial number: A number used to differentiate segments.

Aaibling: When used in the oontext of a hierarchical structure, such as
segments nested within other segmants, two objects which are children of
the same parent are termed "siblings."

aisulate: To execute the display design on the system in such a manner as to
make the display behave the same as it would on the target display
device, allowing the designer to evaluate the display design.

target display device: The microprocessor-controlled equipment located in the
target environment which will visually map input data values representing
the state of the environment onto a display screen in accordance with the
executable display description executing on it.

target environment: The location where the target display device will be used
to rapidly and efficiently convey information describ.ng the environment
to a display user. Examples of target environments include aircraft,
ships, factories, etc.

Ltaat data: The data that simulates the data input to the target display
device in the final environment. The test data are used by the animator
portion of the system as the source of inputs used to drive the display
design in the test phase of the display creation process.

tranaparency: The attribute that specifies to what extent the viewer will be
able to see through an object to observe objects that are hidden behind
it.

update rate: The rate at which a segment is redrawn using new input data
values.

uaar: The display designer or any other person using the systea.

uasr-dafinad antity: An entity which was not provided with the original
system but was created (usually by a maintenance programmer) to represent
a oomplex object or concept not readily represented by the entities
provided by the system. An example would be a particular representation
of a three-dimensional view of the terrain.

yariahle input daviaos: A devioce such as a potentiometer or slide which allows
a designer to incrementally changs input data values during the
evaluation of a diaplay design.

yiswar: The display user who visually gathers the information presented on
the display screen by the target display devioce.

- 67 -

APPENDIX B

DETAILED OPERATIONAL SCENARIO: CREATING AN EXAMPLE DISPLAY

B.1 Introduction

This appendix describes the creation of an example display. This example
will not be very detailed because much of the detail depends on the actual
implementation of the system. We will assume the system is implemented along
the lines as described in Section 3, but we will not assume any particular
graphics terminal or computer-aided design package.

This example will not show every feature of the system. It will provide
the reader with an overview on how many of the capabilities may be used to
create a useful display design. The particular design shown below is possibly
neither optimal nor desirable; it is for illustrative purposes only.

B.2 Sketching the Display

The firast step is to decide what information is to be pictured. VWe will
create here a display for depicting the levels of three fluida: fuel, oil,
and coolant in a vehicle. We will display three iteamas of information for
each. The 1level of each in absolute numbers will be shown numerically. The
level will also be shown as a fraction of the full capacity by the use of a
dial. A scale will be used to show the rate of loss of the fluid. If the
level drops below a certain threshold or the rate of loas climbs above another
threshold, the entire display for that fluid will start to blink to draw
attention to the problem. The final display will appear as in Figure B-1.

We will assume that the space allocated for the display is 2 inches by &
inches so that each separate gauge has a space of 2 by 1-1/3 inches.

B.3 Determining the Display Parameters

After the basie concept is aketched out, the next step 1s to identify the
inputs which will be needed. 1In this particular example, the inputs are the
level and the rate of loss of each fluid. The latter information oould be
calculated internally within the display subaystem, but we will assume that it

- 68 -

-
. -

FUEL ou. COOLRNT

of/f\\i m Q

| 443 | | 87 |
B

Figure B-1 The Fluid Status Display

HE

is not for simplicity. We will name the fluid parameters 'FUEL_LEVEL',
'OIL_LEVEL', 'COOLANT_LEVEL', 'FUEL_LOSS', 'OIL_LOSS', and 'COOLANT_LOSS'. Ve
will also assume that all levels are measured in gallons and that losses are
measured in gallons per hour or per hundred hours.

B.4 Partitioning the Design

Next the display design should be partitioned into modules and segments.
Since each set of gauges 1s to be alike, we will create a generic gauge module
to show all three fluids. Then we will invoke this gauge module three times,
once for each different fluid.

B.5 The Gauge Module

As mentioned in Section 2 of the report, every module has a defined set
of inputs. Two of the inputs needed are the fluid level and rate of loas,
named 'FLUID_LEVEL' and 'FLUID_LOSS', respectively. Also, the gauge module
needs to know the various thresholds mentionsd above. These will be named
"MAX_LEVEL', 'MIN_ACCEPTABLE LEVEL', and 'MAX_ACCEPTABLE LOSS'. These will be
specified by the designer when he creates the module.

The gauge module can be partitioned further by determining the varioua
dymamic elements. The needle will Dbe rotated, so it should be in its own
segment. The mumeric value should have its own segment s0 that it may be
displayed at a specified location on the screen. Finally, the scale will bde
implemented by rescaling a unit rectangle along the appropriate axis, thus {1t
will also nsed to have its own segment.

- 69 -

TN W e W OW I Y T U Y Y WY WU W WY Wy

In the next several sections, we will show how the gauge module can be
designed using the system. Assume that all lines not otherwise specified are
solid and white on a black background.

B.5.1 Segment 1.0

Segment 1.0 is at the top level of the module. It will contain two
distinct items. One is the skeleton for the three gauges as shown in Figure
B-2. The other is the set of commands controlling the blinking of the
display.

£

Figure B-2 Segment 1.0

To create the gauge outlines, the designer enters the graphics editor and
performs the following sequence:

1. The designer places the origin as marked above by a cross in a
small circle at the center of the figure. This special cross
and circle will not actually be drawn in the final display.

2. He commands the system to draw a semi-circle, fixes the center
at the origin, and specifies that the radius will be 7/16 of an
inch. This command might be in the form of pointing to a
pilcture of an arc, pointing to a place for the origin, and
entering the radius using the keyboard.

3. He placed the tick marks on the arc by drawing a line from the
the center to the arc and erasing all but 1/16 inch of the line.

- 70 -

- =

4, Possibly using a menu, he commands the system to draw text and
puts in the 0, 1/2, and 1 markings as shown.

5. He moves the cursor down 1/8 inch from the center of reference
and to the 1left 3/8 inch, commands the system to draw a box,
fixes the upper left corner, drags the cursor down to the
desired position for the lower right corner, and fixes this as
well so that the box is 3/4 inch long by 1/4 inch high.

6. He does a similar operation to create the lower box.

7. He places triangles at the top and bottom of the center of this
second box to mark the maximum acceptable loss.

This completes the skeleton of the gauges at the Segment 1.0 level.

Now he must specify that the Segment 1.0 (and therefore all other
segments) are to blink under certain conditions. He specifies that if
FLUID_LEVEL 1is less than MIN_ACCEPTABLE LEVEL or if the FLUID_LOSS is greater
than - MAX_ACCEPTABLE_LOSS, then the segment is to blink at the medium rate.
This completes the definition of Segment 1.0.

B.5.2 Segment 1.1

The needle will be placed in this segment. First the designer specifies
that Segment 1.0 is showing to provide a reference. Next the designer selects
the appropriate needle icon from the library. Assume this icon is 1 inch long
by 1/4 inch wide. The designer ahrinks the needle so that it is just short of
the '0' tick mark. This is the rest position of the needle. The designer
then uses the dynamics editor to specify the rotation of the needle by an arc-
like dynamices icon from the rest position to the other end of the scale. He
then specifies that the rest position occurs when FLUID LEVEL = O while the
other end of the scale occurs when FLUID LEVEL = MAX LEVEL. The dynamics

editor vill determine that the rotation of Segment 1.1 is to be [(FLUID LEVEL
/ MAX_LEVEL) * -180] degrees.

B.5.3 Segment 1.2

Before defining Segment 1.2, the designer specifies that Segment 1.1 will
not show to reduce the clutter on the screen while editing 1.2. The numeric
value of FLUID_LEVEL will be displayed in the box in this level by specifying
that it is to be displayed centered in a field with five spaces. No commas or
signs are to be displayed. Two places after the decimal point are to bDe
displayed. All of this is specified using the dynamics editor.

The position at which the data will be displayed will be the segaent's
origin. Therefore, the designer uses the dymamics editor to specify that the
origin for Segment 1.2 is to be translated down and to the left so that it is

Just above the bottom line of the box and just to the right of the left line.
The data will be centered in the five spaces to the right.

-T1 -

b i L S i R A A A A AR A R A A A A AR A Al Bhd aibh aitl il - aukh ulhd ol =~ aibie® ol S Al oA te h® et il SR b dia b ek bat Sal Sk Aed Sos o

B.5.4 Segment 1.3

Finally, in Segment 1.3, the rate of loss of the fluid will be shown on
the bar. The designer again requests that Segment 1.0 be shown along with
Segment 1.3. he then positions the cursor just inside the line at the middle
of the left-hand side of the bottom box, expanding the image as necessary to
achieve accuracy. This point will become the origin for the segment.

Selecting the color yellow, he defines a box which is just inside the
outer one and specifies that this box is to be filled in with a solid pattern. T
Next he enters the dynamics editor to specify that the yellow box {is to be
re-scaled along the x-axis. The rest position is when FLUID_iOSS /
MAX ACCEPTABLE_LOSS = 2 and the yellow box decreases to a thin yellow line when
FLUID LOSS = 0. The dynamics editor will then determine that Segment 1.3 is vo
be scaled along the x-axis by FLUID_LOSS / (MAX_ACCEPTABLE LOSS * 2) when
this is between 0 and 1, and that if FLUID LOSS = O a line is to be drawn. The
yellow box will never go outside of the outer white box.Note that {t will reach
the halfway triangular markers when the loss 1s barely acceptable.

The dynamics editor also determines that the origin of this segment is to
be constantly placed upon the left edge of the white box as defined above.

B.6 The Top Level Module

Once the above gauge module is defined, the next step is to create another
module with inputs FUEL_LEVEL, OIL_LEVEL, COOLANT LEVEL, FUEL_LOSS, OIL_LOSS,
and COOLANT LOSS.

B6.1 Segment 1.0

The origin will be the center of the 2-by-4-inch space. This segment will
also be split into three subsegments, with one for each gauge. In the Segment
1.0, the designer will place the words Fuel', O0il', and Coolant' so that
each is centered above the area where the gauges will be placed.

B.6.2 Segment 1.1

Segment 1.1 will be the left-most gauge which shows the fuel information.
The designer specifies that the origin will be to the left of the Segment 1.0
origin by 1 and 1/8 inches. Using the dynamice editor, the designer then
specifies that the Gauge module be invoked. The parameters are associated sao
that FLUID_LEVEL = FUEL_LEVEL, FLUID_LOSS, MAX_ LEVEL = 100.0,
MIN_ACCEPTABLE _LEVEL = 1.0, and MAX_ACCEPTABLE LOSS = 1.0 gallons per hour.)

-72-

B.6.3 Segment 1.2

Segment 1.2 will be the center gauge showing information about the oil
level. It does not need transformation from its original position. 1In this
instance, the Gauge module is invoked with FLUID_LEVEL = OIL_LEVEL, FLUID LOSS
= OIL_LOSS, MAX LEVEL = 10.0, MIN_ACCEPTABLE_LEVEL = 6.0, and
MAX_ACCEPTABLE_LOSS = 0.1 gallons per one hundred hours.

B.6.4 Segment 1.3

Finally, Segment 1.3 will be the right-most gauge showing the coolant
level and loss. Its origin will be 1 and 1/8 inches to the right of Segment
1.0's. The designer specifies that it also invokes the Gauge module with
FLUID_LEVEL = COCLANT LEVEL, FLUID_LOSS = COOLANT_LOSS, MAX_LEVEL = 10.0,
MIN_ACCEPTABLE LEVEL - 8.0, and MAX_ACCEPTABLE LOSS = 0.05 gallons per one
hundred hours.

B.7 Conclusion

The above example shows how a designer can create a simple, two-
dimensional display. This display shows the usage of nested modules and
segments to a limited extent. It also shows the usage of the capabilities of
the graphics and dynamics editors. It is hoped that this appendix leaves the
reader with a firmer understanding of the use of an implemented systes.

e LAl aal Lol Bek Aol i v

APPENDIX C

COMFUTER-AIDED DESIGN PACKAGE AND HARDWARE SURVEY RESULTS

C.1' 1Introduction

In Section 3 of the attached report, we present recommendations for
partitioning the system into pieces which use nondevelopmental components to
reduce the effort required for system implementation. This partitioning is
based on the use of commercial computer hardware and computer-aided design
packages. We performed a preliminary survey of the available technology to
determine if products exist which fit the need. The purpose of this survey
was not to find the absolutely best product, but to determine if our
recommendations are feasible. 1In this appendix, we present this preliminary
survey of the commercial technology currently available and how each product
may or may not fit the need.

C.1.1 The Hardware

As mentioned in the report, the hardware must be capable of matching or
surpassing the performance of current target display devices. This means that
the graphics terminal and the host to which it is linked must provide both
power and speed. The need for the ability to support almost any display
design means that many colors must be available. The need for speed means
that the graphic transformations and other operations must be performed in
hardware. By limiting or not limiting the display designs, the choice of the
graphics terminal and host will determine the success of the implemented
system.

C.'.2 The Software

it is equally important that the system be easy to use. From this
standpoirt, the choice of the computer-aided design (CAD) package will
determine the system's success. The CAD package must meet the following

criteria:

T r—— e -

1. It must be very easy to use.

a. The terminology must not be targeted toward a
draftsman.

b. All information must be prompted so the user need not
memorize when and what to enter.

R ¢. On-line help must be available at all times.
. J
"
' 2. It must be open ended.
a. It must be possible to access the data base.
;; b. It must be possible to integrate custom software.
1"
A
' 3. It must support all display designs.

a. All entities must be supported.
W b. All attributes must be supported.
¢. It must be able to support the display hierarchy.

..i

0!'

;;. C.2 The Survey

:. A comprehensive survey was not part of the contractually prescribed

. effort for this project. We made a preliminary survey to determine if any
systems which meet the above requirements do indeed exist. Below we present
those which meet the need. We also present those which come close but do not

: meet the need.

‘A

,: This survey is based on information as of the fall of 1985. Where many

of the manufacturers do not currently supply a product which fits the needs,

they will likely announce equipment surpassing the need in the near future.

The state- of- the art in computer technology is rapidly changing, and any

Y report which attempts to assess the technology becomes dated before being

A published, even when all products have been examined. Assessment is even less
‘ possible when the survey is not exhaustive.

We have not attempted to 1list all of the features of the various
products, but have selected those which are the most important to this system.
Y Many have advantages which make them very attractive for other applications.
However, in the interests of saving space, we will focus on only those
;apabilities for which we have demonstrated a need in the report. Also, many
+endors produce various models of differing capacity. Where these models are
w;uivalent except for memory size, disk storage size, or expansibility, we
Ter*cn only that model which will best fit the need.

- 75 -

v P ’ AR R WAL L AWl
B e e O e e s S M e

:' C.2.1 Graphics Terminals
i Several pgraphicses terminal products were invesiigated. These include the '
Megatek 133155, the Silicon CGrapnics’' [RIS 2400 Turbo, Masscomp’'s line,
f. Calcomp's Vistagraphic &500XT, Spectragraphics’' DestgnSet 3000, Fvene &
j Sutherland's PS 700 and PS 340, and the Tektrontx 4129 Of these, ounlv three |
- ment1on high-speed filled polvgons in three dimensions in the literature we .
) received and in person-to-person c(unsultations: Megatek, Stlicon Graphios,
¥ and Spectragraphices. The 315, provides 16 colors tn double-bLutfered mode
while the IRIS 40U and DertignSet WU provide 4096 1n double-buffered mode
The IRIS 2400 transforms vectors at 5,000 per second while the Designiet 1000
I transforme 1000 per second. ‘
t'
s C.2.2 Host Computers
»y Manv of the above graphics terminals interface with Digital's VAX line of
g’ products. The MicroVAX Il would fultill the needs of this svetem. Some of
. the above terminals provide the hust computer capabilities as well. Thia (s
:{ particularly true for the IRIS 2400 and rhe DecignSet 3000.
|/
; C.2.3 Other CAD Packages
y
': Many CAD packages exist for all of the sbove computers and graphice
b terminals. We examined Applicon's BRAVO!, Autotrol's Serties 5000, CALMA,
v FARB, MCS's Anvil 4000, Medusa, Palette, Template, Taevir's SUPERCADS,
] Unicad's M/P/E, and Unigraphice. Palette, Anvil 4000, and Template will run
e on many computers. Paslette runs on the Tektronix line as well as others while
ﬁ{ Anvil 4000 and Template run on the Megatek, Tektronix, and other lines. More
ff products are supported by these 2very year. Tasvir and Unicad have products
53 which run on the Silicon Graphic's IRIS 2400 Turbo. Unicad and Template are
- very flexible, allowing a programmer to redesign the interface at will.
Palette sells an Independent Program Interface which allows any program to
&Y send to Palette any command which can be entered by the user, providing not
_: only a very flexible interface but also allowing its graphics drawing
o capabilities to be used wherever needed. The Anvil 4000's interface {8 geared
> specifically to the draftsman, but the prompts will be modifiable in the Anvil
S000 system expected to be announced in the spring of 198¢.
N
Y, C.3 Conclusion
. Even without an exhaustive survey, products exist which fit the needs
; stated i{n the report. Since fewer graphics terminals exist which provide all
- of the capabilities, the focus should be on selection of a graphics terminal
_ before selection of a host computer and a computer-aided design package.
. However, the final choices must fulfill all needs, and so the availability of
, suitable software should be equally important.
0
e
o -76-
R
0‘4.
3
A

- oy

B 2) ‘Li.’.j(“?O AN Y, .’ "-

.y'.r'.-(p r-ll'u-‘pf‘l!‘b.‘v’)\Ilbl‘ » oy I » A x
r ¥, 'vlr,\'t o (!\L ;. i 1 q. .Q.l.l, n, .I.»,, WAY N, a.l'c‘O'.. t."?.w’\.'l'l. ity il A0 !-’o.'r‘

APPENDIX D

AN ASSESSMENT OF GRADS

Y Introduction

As sentioned ir the body of the report, the formal design shoulcd be
descrited using a high-leve] programming language. For many reasons outlined
ir Zection 3.2.2, we suggest the choice of Ada for this language. At one time
another language wan thought to be the best choice: the Graphics Real-time
Applications Uisplay Support (GRADS) languagse. However, further analysis
3hows that 1t would not be as suitable as previously supposed. We present our
reasons for our clais in this appendix.

This assesamsent is based upon the following readings:

1. GRADS USER'S GUILE. IR-MA-198-1, 15 April 1983, Revision 01,
Intermetrics, Inc., Cambridge, MA,

2. AIDS Llaboratory User's Quide, IR-MA-289, 23 September 1983,
Intermetrics, Inc., Cambridge, MA, and

3. Ihe Standard GRADS Diaplay lnterface (Preliminary), IR-258-5, January
1983, Intermetrics, Inc., Cambdridge, MA

Before presenting the advantages and disadvantages of using GRADS for the
formal display description, we will first briefly describe the GRADS

environment .

D.2 A Description of GRADS

GRADS is a high-level, structured programming language specifically
designed for drawing graphic images in a real-time environment. It provides
commands for creating fundamental shapes such as arcs, lines, circles, and
squares in both two and three dimensions. It also provides the basic control
structures found in any programming language: sequential flow, conditional
control, and repetitive looping to facilitate the development of well-
organized code. Furthermore, it provides an interface to the host computer to
allow dyramic updates of the data upon which a graphic image is based. The
definition of GRADS consists of:

- 77 -

RLE MDA L
§ AR K ,“‘;I."l.;i.‘ A‘ Wb ¥ aF \' W "' |‘|, “'I ,," ", l K4 ‘ . 2 '“’(‘

the GRADS programming language,

1
2. the GRADS compiler, and
3 the Standard GRADS Display Interface, SGDI.

A desired graphics display is implemented by compiling the GRADS source code
to create two outputs: 1) a display program for the target device's
microprocessor, and 2) a subprogram which allows the data-acquisition computer
to make changes in a display's parameters.

The instruction set for the program which 1is executed by the display
subsystem is defined by SGDI. This set provides a virtual interface between
the GRADS language and the actual hardware. The manufacturers of a particular
piece of equipment are free to implement the drawing of entities in any manner
*rey choose as long as they interpret the instructions according to the SGDI.

D. 3 The Advantages of GRADS

The primary advantage of GRADS is that it provides a means of programming
4 graphics machine without the user needing to be familiar with the specific
featires of the target hardware. Essentially every graphics device has its
ownn instruction set, and the programmer must relearn how to draw images
whenever he moves to a new one. GRADS would eliminate this relearning. GRADS
would also eliminate the need to rewrite software when a program is
transferred from one display device to another. Hence the design of GRADS
provides a potential for portability of techniques and software. However, it
will be shown in Section D.4 that this portability is not fully realized.

Another advantage of GRADS, this time over Ada, is that an interpreter
which implements the SGDI is much simpler to write than an Ada compiler.
Hence, in those situations in which an Ada compiler is not available, GRADS
would be preferable. However, as Ada becomes more prevalent in the industry,
Ada compilers will be available for every type of computer, in particular
thuose which are embedded in the target display devices.

D.3.1 Sumilar Alternatives

GRADS is not the only specification available which provides a potential
for portability. The Association of Computing Machinery Special Interest
Group on Computer Graphics (ACM/SIGGRAPH) has specified a standard known as
Core. Also, the International Standards Organization (1SO) has created
another standard: the Graphical Kernel System (CKS). While these standards
and others like them are not full programming languages, they could be used in
the system. However, they have been designed for all graphics applications,
with the result that they are too general to be used in a real-time
environment. From this we extract a second advantage of GRADS: optimization
towards speed.

Hence the primary advantages of GRADS lie in potential portability and in
speed. Since these effectively summarize the requirements for the display
description, GRADS should be the ideal choice.

- 178 -

Ex D.4 The Disadvantages of GRADS.

U

‘l

:2; However, due to a lack of support by target device vendors, GRADS is
vﬁz effectively non-portable. To be portable, a system must be defined in such a

S way that it is not dependent upon the particulars of any one device and it
must also be supported by a large number of computers and graphics terminals.

:f“ GRADS is limited because while one vendor produces graphics terminals which
;gv support a subset of GRADS, to our knowledge no one else is planning to design
¢9q other such terminals. For GRADS to become a standard, a large portion of the
}ﬂ? graphics terminal industry would need to produce supporting products.
. Also, most programmers are not familiar with the GRADS language. Even
. $ though learning a new language is not difficult, it does take time. Since
) programmers do not stay long on a particular project at many of the facilities
:{ﬁ- where the system would be used, time spent training new programmers is very
:\é significant.

Finally, Ada has been mandated by the Department of Defense for wuse in
embedded systems; however, GRADS is not based on the Ada linguage. Because of

éag this mandate, use of GRADS would require proof that it is much more su.table
s, than Ada for this application.
L
v,
'}. D.5 Conclusion
¢
Cad

While GRADS has its advantages, these are ocutweighed by the advantages of
N using Ada for the formal display description. The use of Ada would allow the

use of commercially available compilers whereas GRADS would require the

development of an interpreter for each installation. Finally, programsers are
f or will be more familiar with the Ada language whereas use of GRADS would
.JQ require training. These factors show that while GRADS would be a reasonable
" language for use in this application, Ada is the best choice for wus¢ in the
og? formal display description.

A

{8 -79 -

1
1] S Ganveriboen Bractang 0t e | 1K, da s R

o

L2l . _ o LI I I ey “n . P
“f»_ [N TR I - RN LRI RS ALY
A i, ¥

ARG O O DO T PO T O M & NN N AT g,
AR Sl -”fﬁ‘.-h‘.o",o".-'*, X wt i W M ﬁ?w'l.g‘v.-;‘ # ’.'t,; 3,984

.y

TT——T T W oottt SRS ShGAEA il atio:.. spsie, NS U O a0 |

